• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 13,502
Next 10 →

Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories

by Li Fei-fei , 2004
"... Abstract — Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been te ..."
Abstract - Cited by 784 (16 self) - Add to MetaCart
Abstract — Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been

Linear spatial pyramid matching using sparse coding for image classification

by Jianchao Yang, Kai Yu, Yihong Gong, Thomas Huang - in IEEE Conference on Computer Vision and Pattern Recognition(CVPR , 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract - Cited by 497 (21 self) - Add to MetaCart
Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup

Using Discriminant Eigenfeatures for Image Retrieval

by Daniel L. Swets, John Weng , 1996
"... This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class retrieval ..."
Abstract - Cited by 508 (15 self) - Add to MetaCart
This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class

From Few to many: Illumination cone models for face recognition under variable lighting and pose

by Athinodoros S. Georghiades, Peter N. Belhumeur, David J. Kriegman - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001
"... We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a smal ..."
Abstract - Cited by 754 (12 self) - Add to MetaCart
small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render—or synthesize—images of the face under novel poses and illumination

Real-time human pose recognition in parts from single depth images

by Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake - IN CVPR , 2011
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract - Cited by 568 (17 self) - Add to MetaCart
We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler

Image analogies

by Aaron Hertzmann , 2001
"... Figure 1 An image analogy. Our problem is to compute a new “analogous ” image B ′ that relates to B in “the same way ” as A ′ relates to A. Here, A, A ′ , and B are inputs to our algorithm, and B ′ is the output. The full-size images are shown in Figures 10 and 11. This paper describes a new framewo ..."
Abstract - Cited by 455 (8 self) - Add to MetaCart
framework for processing images by example, called “image analogies. ” The framework involves two stages: a design phase, in which a pair of images, with one image purported to be a “filtered ” version of the other, is presented as “training data”; and an application phase, in which the learned filter

Learning to detect natural image boundaries using local brightness, color, and texture cues

by David R. Martin, Charless C. Fowlkes, Jitendra Malik - PAMI , 2004
"... The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these fe ..."
Abstract - Cited by 625 (18 self) - Add to MetaCart
these features in an optimal way, we train a classifier using human labeled images as ground truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present precision-recall curves showing that the resulting detector significantly

Robust face recognition via sparse representation

by John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, Yi Ma - IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract - Cited by 936 (40 self) - Add to MetaCart
signal representation offers the key to addressing this problem. Based on a sparse representation computed by ℓ 1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature

Active Appearance Models.

by Timothy F Cootes , Gareth J Edwards , Christopher J Taylor - IEEE Transactions on Pattern Analysis and Machine Intelligence, , 2001
"... AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations ..."
Abstract - Cited by 2154 (59 self) - Add to MetaCart
AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations

Neural Network-Based Face Detection

by Henry A. Rowley, Shumeet Baluja, Takeo Kanade - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1998
"... We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present ..."
Abstract - Cited by 1206 (22 self) - Add to MetaCart
We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present
Next 10 →
Results 1 - 10 of 13,502
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University