• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 116,670
Next 10 →

Eigenface recognition using different training data sizes

by Zhifeng Li , Xiaoou Tang - In International Conference on Information Security , 2002
"... ABSTRACT This paper explores the relationship between eigenface recognition performance and different training data sets. Using the Multilevel Dominant Eigenvector Estimation (MDEE) method we are able to compute eigenfaces from a large number of training samples. This allows us to compare the recog ..."
Abstract - Cited by 2 (0 self) - Add to MetaCart
the recognition performance using different training data sizes. Experimental results show that increasing the number of people benefits the recognition performance more than increasing the number of images per person.

An Empirical Study of Smoothing Techniques for Language Modeling

by Stanley F. Chen , 1998
"... We present an extensive empirical comparison of several smoothing techniques in the domain of language modeling, including those described by Jelinek and Mercer (1980), Katz (1987), and Church and Gale (1991). We investigate for the first time how factors such as training data size, corpus (e.g., Br ..."
Abstract - Cited by 1224 (21 self) - Add to MetaCart
We present an extensive empirical comparison of several smoothing techniques in the domain of language modeling, including those described by Jelinek and Mercer (1980), Katz (1987), and Church and Gale (1991). We investigate for the first time how factors such as training data size, corpus (e

Dramatically Reducing Training Data Size Through Vocabulary Saturation

by William D. Lewis, Sauleh Eetemadi
"... Our field has seen significant improvements in the quality of machine translation systems over the past several years. The single biggest factor in this improvement has been the accumulation of ever larger stores of data. However, we now find ourselves the victims of our own success, in that it has ..."
Abstract - Cited by 3 (1 self) - Add to MetaCart
on techniques related to the latter efforts. We have developed a very simple n-gram counting method that reduces the size of data sets dramatically, as much as 90%, and is applicable independent of specific dev and test data. At the same time it reduces model sizes, improves training times, and, because

Combining labeled and unlabeled data with co-training

by Avrim Blum, Tom Mitchell , 1998
"... We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the ta ..."
Abstract - Cited by 1633 (28 self) - Add to MetaCart
data, but our goal is to use both views together to allow inexpensive unlabeled data to augment amuch smaller set of labeled examples. Speci cally, the presence of two distinct views of each example suggests strategies in which two learning algorithms are trained separately on each view, and then each

Training Linear SVMs in Linear Time

by Thorsten Joachims , 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for high-dimensional sparse data commonly encountered in applications like text classification, word-sense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract - Cited by 549 (6 self) - Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for high-dimensional sparse data commonly encountered in applications like text classification, word-sense disambiguation, and drug design. These applications involve a large number of examples n

Training Products of Experts by Minimizing Contrastive Divergence

by Geoffrey E. Hinton , 2002
"... It is possible to combine multiple latent-variable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual “expert ” models makes it hard to generate samples from the combined model but easy to infer the values of the l ..."
Abstract - Cited by 850 (75 self) - Add to MetaCart
is unnecessary. Training a PoE by maximizing the likelihood of the data is difficult because it is hard even to approximate the derivatives of the renormalization term in the combination rule. Fortunately, a PoE can be trained using a different objective function called “contrastive divergence ” whose

Object Detection with Discriminatively Trained Part Based Models

by Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, Deva Ramanan
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract - Cited by 1422 (49 self) - Add to MetaCart
, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM

Training Support Vector Machines: an Application to Face Detection

by Edgar Osuna, Robert Freund, Federico Girosi , 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract - Cited by 727 (1 self) - Add to MetaCart
global optimality, and can be used to train SVM's over very large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of optimality conditions which are used both to generate improved iterative values, and also establish the stopping

A Sequential Algorithm for Training Text Classifiers

by David D. Lewis, William A. Gale , 1994
"... The ability to cheaply train text classifiers is critical to their use in information retrieval, content analysis, natural language processing, and other tasks involving data which is partly or fully textual. An algorithm for sequential sampling during machine learning of statistical classifiers was ..."
Abstract - Cited by 631 (10 self) - Add to MetaCart
The ability to cheaply train text classifiers is critical to their use in information retrieval, content analysis, natural language processing, and other tasks involving data which is partly or fully textual. An algorithm for sequential sampling during machine learning of statistical classifiers

Evaluating the Econometric Evaluations of Training Programs With Experimental Data," Industrial Relations Section, Working Paper No.

by Robert J Lalonde , 1984
"... ..."
Abstract - Cited by 553 (5 self) - Add to MetaCart
Abstract not found
Next 10 →
Results 1 - 10 of 116,670
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University