• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 30,101
Next 10 →

The Importance of Traditional Techniques Emerging technologies can gain from traditional techniques

by Hajime Eto
"... Current innovation policies for emerging technology regards traditional techniques, often owned by small or medium scale enterprises in local areas, as useless. This article sheds new light on such techniques and discusses their usefulness for emerging technology in Japan. After a historical review ..."
Abstract - Add to MetaCart
Current innovation policies for emerging technology regards traditional techniques, often owned by small or medium scale enterprises in local areas, as useless. This article sheds new light on such techniques and discusses their usefulness for emerging technology in Japan. After a historical review

An iterative image registration technique with an application to stereo vision

by Bruce D. Lucas, Takeo Kanade - In IJCAI81 , 1981
"... Image registration finds a variety of applications in computer vision. Unfortunately, traditional image registration techniques tend to be costly. We present a new image registration technique that makes use of the spatial intensity gradient of the images to find a good match using a type of Newton- ..."
Abstract - Cited by 2897 (30 self) - Add to MetaCart
Image registration finds a variety of applications in computer vision. Unfortunately, traditional image registration techniques tend to be costly. We present a new image registration technique that makes use of the spatial intensity gradient of the images to find a good match using a type of Newton

Cumulated Gain-based Evaluation of IR Techniques

by Kalervo Järvelin, Jaana Kekäläinen - ACM Transactions on Information Systems , 2002
"... Modem large retrieval environments tend to overwhelm their users by their large output. Since all documents are not of equal relevance to their users, highly relevant documents should be identified and ranked first for presentation to the users. In order to develop IR techniques to this direction, i ..."
Abstract - Cited by 694 (3 self) - Add to MetaCart
Modem large retrieval environments tend to overwhelm their users by their large output. Since all documents are not of equal relevance to their users, highly relevant documents should be identified and ranked first for presentation to the users. In order to develop IR techniques to this direction

Thumbs up? Sentiment Classification using Machine Learning Techniques

by Bo Pang, Lillian Lee, Shivakumar Vaithyanathan - IN PROCEEDINGS OF EMNLP , 2002
"... We consider the problem of classifying documents not by topic, but by overall sentiment, e.g., determining whether a review is positive or negative. Using movie reviews as data, we find that standard machine learning techniques definitively outperform human-produced baselines. However, the three mac ..."
Abstract - Cited by 1101 (7 self) - Add to MetaCart
We consider the problem of classifying documents not by topic, but by overall sentiment, e.g., determining whether a review is positive or negative. Using movie reviews as data, we find that standard machine learning techniques definitively outperform human-produced baselines. However, the three

A theory of timed automata

by Rajeev Alur , 1999
"... Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis of ..."
Abstract - Cited by 2651 (32 self) - Add to MetaCart
Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis

Smooth minimization of nonsmooth functions

by Yu. Nesterov - Math. Programming , 2005
"... In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit max-structure. Our approach can be considered as an alternative to black-box minimization. F ..."
Abstract - Cited by 523 (1 self) - Add to MetaCart
In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit max-structure. Our approach can be considered as an alternative to black-box minimization

Establishing Pairwise Keys in Distributed Sensor Networks

by Donggang Liu, Peng Ning , 2003
"... Pairwise key establishment is a fundamental security service in sensor networks; it enables sensor nodes to communicate securely with each other using cryptographic techniques. However, due to the resource constraints on sensors, it is infeasible to use traditional key management techniques such as ..."
Abstract - Cited by 543 (29 self) - Add to MetaCart
Pairwise key establishment is a fundamental security service in sensor networks; it enables sensor nodes to communicate securely with each other using cryptographic techniques. However, due to the resource constraints on sensors, it is infeasible to use traditional key management techniques

Valuing American options by simulation: A simple least-squares approach

by Francis A. Longstaff, Eduardo S. Schwartz - Review of Financial Studies , 2001
"... This article presents a simple yet powerful new approach for approximating the value of America11 options by simulation. The kcy to this approach is the use of least squares to estimate the conditional expected payoff to the optionholder from continuation. This makes this approach readily applicable ..."
Abstract - Cited by 517 (9 self) - Add to MetaCart
applicable in path-dependent and multifactor situations where traditional finite difference techniques cannot be used. We illustrate this technique with several realistic exatnples including valuing an option when the underlying asset follows a jump-diffusion process and valuing an America11 swaption in a 20

Analysis of Recommendation Algorithms for E-Commerce

by Badrul Sarwar, George Karypis, Joseph Konstan, John Rield , 2000
"... Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in E-Commerce nowadays. In this paper, we investigate several techniques for analyzing large-scale pu ..."
Abstract - Cited by 523 (22 self) - Add to MetaCart
Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in E-Commerce nowadays. In this paper, we investigate several techniques for analyzing large

Symbolic Model Checking without BDDs

by Armin Biere , Alessandro Cimatti, Edmund Clarke, Yunshan Zhu , 1999
"... Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis ..."
Abstract - Cited by 917 (75 self) - Add to MetaCart
Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis
Next 10 →
Results 1 - 10 of 30,101
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University