Results 1  10
of
33,202
Tight Complexity Bounds for Reasoning in the Description Logic BEL
"... Abstract. Recently, Bayesian extensions of Description Logics, and in particular the logic BEL, were introduced as a means of representing certain knowledge that depends on an uncertain context. In this paper we introduce a novel structure, called proof structure, that encodes the contextual informa ..."
Abstract
 Add to MetaCart
information required to deduce subsumption relations from a BEL knowledge base. Using this structure, we show that probabilistic reasoning in BEL can be reduced in polynomial time to standard Bayesian network inferences, thus obtaining tight complexity bounds for reasoning in BEL. 1
Tight Complexity Bounds for Parallel Comparison Sorting
 Proc. of 29th IEEE Symp. on Foundations of Computer Science
, 1986
"... The time complexity of sorting n elements using p ~ n processors on Valiant's parallel comparison tree model is considered. The following results are obtained. 1. We show that this time complexity is e(Iogn/log(1 +p/n». This complements the AKS sorting network in settling the wider problem of c ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
The time complexity of sorting n elements using p ~ n processors on Valiant's parallel comparison tree model is considered. The following results are obtained. 1. We show that this time complexity is e(Iogn/log(1 +p/n». This complements the AKS sorting network in settling the wider problem
Tight Complexity Bounds for Optimizing Composite Objectives
"... Abstract We provide tight upper and lower bounds on the complexity of minimizing the average of m convex functions using gradient and prox oracles of the component functions. We show a significant gap between the complexity of deterministic vs randomized optimization. For smooth functions, we show ..."
Abstract
 Add to MetaCart
Abstract We provide tight upper and lower bounds on the complexity of minimizing the average of m convex functions using gradient and prox oracles of the component functions. We show a significant gap between the complexity of deterministic vs randomized optimization. For smooth functions, we show
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2825 (11 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
Multiparty Communication Complexity
, 1989
"... A given Boolean function has its input distributed among many parties. The aim is to determine which parties to tMk to and what information to exchange with each of them in order to evaluate the function while minimizing the total communication. This paper shows that it is possible to obtain the Boo ..."
Abstract

Cited by 760 (22 self)
 Add to MetaCart
the Boolean answer deterministically with only a polynomial increase in communication with respect to the information lower bound given by the nondeterministic communication complexity of the function.
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 574 (5 self)
 Add to MetaCart
the modern (complexity theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires superpolynomial time on a boundederror probabilistic Turing machine, and thus not in the class
The complexity of theoremproving procedures
 IN STOC
, 1971
"... It is shown that any recognition problem solved by a polynomial timebounded nondeterministic Turing machine can be “reduced” to the problem of determining whether a given propositional formula is a tautology. Here “reduced ” means, roughly speaking, that the first problem can be solved deterministi ..."
Abstract

Cited by 1050 (5 self)
 Add to MetaCart
It is shown that any recognition problem solved by a polynomial timebounded nondeterministic Turing machine can be “reduced” to the problem of determining whether a given propositional formula is a tautology. Here “reduced ” means, roughly speaking, that the first problem can be solved
OBBTree: A hierarchical structure for rapid interference detection
 PROC. ACM SIGGRAPH, 171–180
, 1996
"... We present a data structure and an algorithm for efficient and exact interference detection amongst complex models undergoing rigid motion. The algorithm is applicable to all general polygonal and curved models. It precomputes a hierarchical representation of models using tightfitting oriented bo ..."
Abstract

Cited by 845 (53 self)
 Add to MetaCart
We present a data structure and an algorithm for efficient and exact interference detection amongst complex models undergoing rigid motion. The algorithm is applicable to all general polygonal and curved models. It precomputes a hierarchical representation of models using tightfitting oriented
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1865 (43 self)
 Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VC
Convex Position Estimation in Wireless Sensor Networks
"... A method for estimating unknown node positions in a sensor network based exclusively on connectivityinduced constraints is described. Known peertopeer communication in the network is modeled as a set of geometric constraints on the node positions. The global solution of a feasibility problem fo ..."
Abstract

Cited by 493 (0 self)
 Add to MetaCart
for these constraints yields estimates for the unknown positions of the nodes in the network. Providing that the constraints are tight enough, simulation illustrates that this estimate becomes close to the actual node positions. Additionally, a method for placing rectangular bounds around the possible positions for all
Results 1  10
of
33,202