Results 11  20
of
2,530,879
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
Live Migration of Virtual Machines
 In Proceedings of the 2nd ACM/USENIX Symposium on Networked Systems Design and Implementation (NSDI
, 2005
"... Migrating operating system instances across distinct physical hosts is a useful tool for administrators of data centers and clusters: It allows a clean separation between hardware and software, and facilitates fault management, load balancing, and lowlevel system maintenance. By carrying out the ma ..."
Abstract

Cited by 613 (14 self)
 Add to MetaCart
the majority of migration while OSes continue to run, we achieve impressive performance with minimal service downtimes; we demonstrate the migration of entire OS instances on a commodity cluster, recording service downtimes as low as 60ms. We show that that our performance is sufficient to make live migration
Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods
 J. Mol. Evol
, 1994
"... Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called ..."
Abstract

Cited by 540 (28 self)
 Add to MetaCart
Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called
An algebraic approach to network coding
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 2003
"... We take a new look at the issue of network capacity. It is shown that network coding is an essential ingredient in achieving the capacity of a network. Building on recent work by Li et al., who examined the network capacity of multicast networks, we extend the network coding framework to arbitrary n ..."
Abstract

Cited by 864 (85 self)
 Add to MetaCart
networks and robust networking. For networks which are restricted to using linear network codes, we find necessary and sufficient conditions for the feasibility of any given set of connections over a given network. We also consider the problem of network recovery for nonergodic link failures
A ReExamination of Text Categorization Methods
, 1999
"... This paper reports a controlled study with statistical significance tests on five text categorization methods: the Support Vector Machines (SVM), a kNearest Neighbor (kNN) classifier, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a NaiveBayes (NB) classifier. We f ..."
Abstract

Cited by 832 (24 self)
 Add to MetaCart
focus on the robustness of these methods in dealing with a skewed category distribution, and their performance as function of the trainingset category frequency. Our results show that SVM, kNN and LLSF significantly outperform NNet and NB when the number of positive training instances per category
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements
A Structural Approach to Operational Semantics
, 1981
"... Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can be ..."
Abstract

Cited by 1541 (3 self)
 Add to MetaCart
Syntax of a very simple programming language called L. What is abstract about it will be discussed a little here and later at greater length. For us syntax is a collection of syntactic sets of phrases; each set corresponds to a different type of phrase. Some of these sets are very simple and can
The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm
, 1997
"... In this paper, we analyze a performance model for the TCP Congestion Avoidance algorithm. The model predicts the bandwidth of a sustained TCP connection subjected to light to moderate packet losses, such as loss caused by network congestion. It assumes that TCP avoids retransmission timeouts and alw ..."
Abstract

Cited by 648 (18 self)
 Add to MetaCart
and always has sufficient receiver window and sender data. The model predicts the Congestion Avoidance performance of nearly all TCP implementations under restricted conditions and of TCP with SelectiveAcknowledgements over a much wider range of Internet conditions. We verify
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 805 (26 self)
 Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains
Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ¹ minimization
 PROC. NATL ACAD. SCI. USA 100 2197–202
, 2002
"... Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered ..."
Abstract

Cited by 626 (37 self)
 Add to MetaCart
considered the special case where D is an overcomplete system consisting of exactly two orthobases, and has shown that, under a condition of mutual incoherence of the two bases, and assuming that S has a sufficiently sparse representation, this representation is unique and can be found by solving a convex
Results 11  20
of
2,530,879