Results 1  10
of
1,642,629
KernelBased Object Tracking
, 2003
"... A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatiallysmooth similarity fu ..."
Abstract

Cited by 900 (4 self)
 Add to MetaCart
information, Kalman tracking using motion models, and face tracking. Keywords: nonrigid object tracking; target localization and representation; spatiallysmooth similarity function; Bhattacharyya coefficient; face tracking. 1
Reconstruction and Representation of 3D Objects with Radial Basis Functions
 Computer Graphics (SIGGRAPH ’01 Conf. Proc.), pages 67–76. ACM SIGGRAPH
, 2001
"... We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from pointcloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs al ..."
Abstract

Cited by 505 (1 self)
 Add to MetaCart
We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from pointcloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs
Hierarchical Models of Object Recognition in Cortex
, 1999
"... The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore th ..."
Abstract

Cited by 836 (84 self)
 Add to MetaCart
the biological feasibility of this class of models to explain higher level visual processing, such as object recognition. We describe a new hierarchical model that accounts well for this complex visual task, is consistent with several recent physiological experiments in inferotemporal cortex and makes testable
Submodular functions, matroids and certain polyhedra
, 2003
"... The viewpoint of the subject of matroids, and related areas of lattice theory, has always been, in one way or another, abstraction of algebraic dependence or, equivalently, abstraction of the incidence relations in geometric representations of algebra. Often one of the main derived facts is that all ..."
Abstract

Cited by 355 (0 self)
 Add to MetaCart
The viewpoint of the subject of matroids, and related areas of lattice theory, has always been, in one way or another, abstraction of algebraic dependence or, equivalently, abstraction of the incidence relations in geometric representations of algebra. Often one of the main derived facts is that all bases have the same cardinality. (See Van der Waerden, Section 33.) From the viewpoint of mathematical programming, the equal cardinality of all bases has special meaning — namely, that every basis is an optimumcardinality basis. We are thus prompted to study this simple property in the context of linear programming. It turns out to be useful to regard “pure matroid theory”, which is only incidentally related to the aspects of algebra which it abstracts, as the study of certain classes of convex polyhedra. (1) A matroid M = (E,F) can be defined as a finite set E and a nonempty family F of socalled independent subsets of E such that (a) Every subset of an independent set is independent, and (b) For every A ⊆ E, every maximal independent subset of A, i.e., every basis of A, has the same cardinality, called the rank, r(A), of A (with respect to M). (This definition is not standard. It is prompted by the present interest). (2) Let RE denote the space of realvalued vectors x = [xj], j ∈ E. Let R+E = {x: 0 ≤ x ∈ RE}. (3) A polymatroid P in the space RE is a compact nonempty subset of R+E such that (a) 0 ≤ x0 ≤ x1 ∈ P = ⇒ x0 ∈ P. (b) For every a ∈ R+E, every maximal x ∈ P such that x ≤ a, i.e., every basis x of a, has the same sum j∈E xj, called the rank, r(a), of a (with respect to P).
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves stateoftheart results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract

Cited by 1422 (49 self)
 Add to MetaCart
and optimizing the latent SVM objective function.
Distortion invariant object recognition in the dynamic link architecture
 IEEE TRANSACTIONS ON COMPUTERS
, 1993
"... We present an object recognition system based on the Dynamic Link Architecture, which is an extension to classical Artificial Neural Networks. The Dynamic Link Architecture exploits correlations in the finescale temporal structure of cellular signals in order to group neurons dynamically into hig ..."
Abstract

Cited by 637 (80 self)
 Add to MetaCart
matching cost function. Our implementation on a transputer network successfully achieves recognition of human faces and office objects from gray level camera images. The performance of the program is evaluated by a statistical analysis of recognition results from a portrait gallery comprising images of 87
Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
 NeuroImage
, 2002
"... Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures for mult ..."
Abstract

Cited by 521 (9 self)
 Add to MetaCart
Finding objective and effective thresholds for voxelwise statistics derived from neuroimaging data has been a longstanding problem. With at least one test performed for every voxel in an image, some correction of the thresholds is needed to control the error rates, but standard procedures
Maximizing the Spread of Influence Through a Social Network
 In KDD
, 2003
"... Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in gametheoretic settings, and the effects of ..."
Abstract

Cited by 990 (7 self)
 Add to MetaCart
the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63 % of optimal for several classes of models; our framework suggests a general approach
The Lumigraph
 IN PROCEEDINGS OF SIGGRAPH 96
, 1996
"... This paper discusses a new method for capturing the complete appearanceof both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used ..."
Abstract

Cited by 1025 (39 self)
 Add to MetaCart
This paper discusses a new method for capturing the complete appearanceof both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Results 1  10
of
1,642,629