• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 11 - 20 of 7,170
Next 10 →

Large margin methods for structured and interdependent output variables

by Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun - JOURNAL OF MACHINE LEARNING RESEARCH , 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract - Cited by 624 (12 self) - Add to MetaCart
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses

Relations between the statistics of natural images and the response properties of cortical cells

by David J. Field - J. Opt. Soc. Am. A , 1987
"... The relative efficiency of any particular image-coding scheme should be defined only in relation to the class of images that the code is likely to encounter. To understand the representation of images by the mammalian visual system, it might therefore be useful to consider the statistics of images f ..."
Abstract - Cited by 831 (18 self) - Add to MetaCart
The relative efficiency of any particular image-coding scheme should be defined only in relation to the class of images that the code is likely to encounter. To understand the representation of images by the mammalian visual system, it might therefore be useful to consider the statistics of images

Bayesian Network Classifiers

by Nir Friedman, Dan Geiger, Moises Goldszmidt , 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract - Cited by 796 (20 self) - Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly

Multitask Learning,”

by Rich Caruana , Lorien Pratt , Sebastian Thrun , 1997
"... Abstract. Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for ..."
Abstract - Cited by 677 (6 self) - Add to MetaCart
Abstract. Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned

CIL: Intermediate language and tools for analysis and transformation of C programs

by George C. Necula, Scott Mcpeak, Shree P. Rahul, Westley Weimer - In International Conference on Compiler Construction , 2002
"... Abstract. This paper describes the CIntermediate Language: a highlevel representation along with a set of tools that permit easy analysis and source-to-source transformation of C programs. Compared to C, CIL has fewer constructs. It breaks down certain complicated constructs of C into simpler ones, ..."
Abstract - Cited by 533 (11 self) - Add to MetaCart
, and thus it works at a lower level than abstract-syntax trees. But CIL is also more high-level than typical intermediate languages (e.g., three-address code) designed for compilation. As a result, what we have is a representation that makes it easy to analyze and manipulate C programs, and emit them in a

Features of similarity.

by Amos Tversky - Psychological Review , 1977
"... Similarity plays a fundamental role in theories of knowledge and behavior. It serves as an organizing principle by which individuals classify objects, form concepts, and make generalizations. Indeed, the concept of similarity is ubiquitous in psychological theory. It underlies the accounts of stimu ..."
Abstract - Cited by 1455 (2 self) - Add to MetaCart
tree-like structures rather than dimensionally organized spaces. However, most theoretical and empirical analyses of similarity assume that objects can be adequately represented as points in some coordinate space and that dissimilarity behaves like a metric distance function. Both dimensional

Fusion, Propagation, and Structuring in Belief Networks

by Judea Pearl - ARTIFICIAL INTELLIGENCE , 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract - Cited by 484 (8 self) - Add to MetaCart
tree-structured representation for a collection of probabilistically coupled propositions using auxiliary (dummy) variables, colloquially called "hidden causes. " It is shown that if such a tree-structured representation exists, then it is possible to uniquely uncover the topology of the tree

Recursive Distributed Representations

by Jordan B. Pollack - Artificial Intelligence , 1990
"... A long-standing difficulty for connectionist modeling has been how to represent variable-sized recursive data structures, such as trees and lists, in fixed-width patterns. This paper presents a connectionist architecture which automatically develops compact distributed representations for such compo ..."
Abstract - Cited by 414 (9 self) - Add to MetaCart
A long-standing difficulty for connectionist modeling has been how to represent variable-sized recursive data structures, such as trees and lists, in fixed-width patterns. This paper presents a connectionist architecture which automatically develops compact distributed representations

View-Dependent Refinement of Progressive Meshes

by Hugues Hoppe
"... Level-of-detail (LOD) representations are an important tool for realtime rendering of complex geometric environments. The previously introduced progressive mesh representation defines for an arbitrary triangle mesh a sequence of approximating meshes optimized for view-independent LOD. In this paper, ..."
Abstract - Cited by 459 (5 self) - Add to MetaCart
Level-of-detail (LOD) representations are an important tool for realtime rendering of complex geometric environments. The previously introduced progressive mesh representation defines for an arbitrary triangle mesh a sequence of approximating meshes optimized for view-independent LOD. In this paper

Policy gradient methods for reinforcement learning with function approximation.

by Richard S Sutton , David Mcallester , Satinder Singh , Yishay Mansour - In NIPS, , 1999
"... Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly repres ..."
Abstract - Cited by 439 (20 self) - Add to MetaCart
policy. Large applications of reinforcement learning (RL) require the use of generalizing function approximators such neural networks, decision-trees, or instance-based methods. The dominant approach for the last decade has been the value-function approach, in which all function approximation effort goes
Next 10 →
Results 11 - 20 of 7,170
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University