Results 1  10
of
21,292
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
as well as a large number of features N, while each example has only s << N nonzero features. This paper presents a CuttingPlane Algorithm for training linear SVMs that provably has training time O(sn) for classification problems and O(sn log(n)) for ordinal regression problems. The algorithm
Detection and Tracking of Point Features
 International Journal of Computer Vision
, 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract

Cited by 629 (2 self)
 Add to MetaCart
in 1981. The method defines the measure of match between fixedsize feature windows in the past and current frame as the sum of squared intensity differences over the windows. The displacement is then defined as the one that minimizes this sum. For small motions, a linearization of the image intensities
The pyramid match kernel: Discriminative classification with sets of image features
 IN ICCV
, 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernelbased classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract

Cited by 544 (29 self)
 Add to MetaCart
for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multiresolution histograms and computes a weighted histogram intersection in this space. This “pyramid match” computation is linear
Regularization paths for generalized linear models via coordinate descent
, 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract

Cited by 724 (15 self)
 Add to MetaCart
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the
Maximum Likelihood Linear Transformations for HMMBased Speech Recognition
 COMPUTER SPEECH AND LANGUAGE
, 1998
"... This paper examines the application of linear transformations for speaker and environmental adaptation in an HMMbased speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple bias ..."
Abstract

Cited by 570 (68 self)
 Add to MetaCart
bias, strict linear featurespace transformations are inappropriate in this case. Hence, only modelbased linear transforms are considered. The paper compares the two possible forms of modelbased transforms: (i) unconstrained, where any combination of mean and variance transform may be used, and (ii
Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features
, 1983
"... For a successful analysis of the relation between amino acid sequence and protein structure, an unambiguous and physically meaningful definition of secondary structure is essential. We have developed a set of simple and physically motivated criteria for secondary structure, programmed as a patternr ..."
Abstract

Cited by 2096 (5 self)
 Add to MetaCart
recognition process of hydrogenbonded and geometrical features extracted from xray coordinates. Cooperative secondary structure is recognized as repeats of the elementary hydrogenbonding patterns “turn ” and “bridge. ” Repeating turns are “helices, ” repeating bridges are “ladders, ” connected ladders are “sheets
Feature selection based on mutual information: Criteria of maxdependency, maxrelevance, and minredundancy
 IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2005
"... Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first der ..."
Abstract

Cited by 571 (8 self)
 Add to MetaCart
compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI
Fisher Discriminant Analysis With Kernels
, 1999
"... A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision f ..."
Abstract

Cited by 503 (18 self)
 Add to MetaCart
A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision
Using Discriminant Eigenfeatures for Image Retrieval
, 1996
"... This paper describes the automatic selection of features from an image training set using the theories of multidimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for viewbased class retrieval ..."
Abstract

Cited by 508 (15 self)
 Add to MetaCart
This paper describes the automatic selection of features from an image training set using the theories of multidimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for viewbased class
SupportVector Networks
 Machine Learning
, 1995
"... The supportvector network is a new learning machine for twogroup classification problems. The machine conceptually implements the following idea: input vectors are nonlinearly mapped to a very highdimension feature space. In this feature space a linear decision surface is constructed. Special pr ..."
Abstract

Cited by 3703 (35 self)
 Add to MetaCart
The supportvector network is a new learning machine for twogroup classification problems. The machine conceptually implements the following idea: input vectors are nonlinearly mapped to a very highdimension feature space. In this feature space a linear decision surface is constructed. Special
Results 1  10
of
21,292