Results 1  10
of
1,154,544
ASYMPTOTIC ESTIMATES OF THE NORMS OF POSITIVE DEFINITE TÖPLITZ MATRICES AND DETECTION OF QUASIPERIODIC COMPONENTS OF STATIONARY RANDOM SIGNALS
, 2005
"... Abstract. Asymptotic forms of the HilbertScmidt and Hilbert norms of positive definite Töplitz matrices QN = (b(j − k)) N−1 j,k=0 as N → ∞ are determined. Here b(j) are consequent trigonometric moments of a generating nonnegative mesure dσ(θ) on [−π, π]. It is proven that σ(θ) is continuous if an ..."
Abstract
 Add to MetaCart
if and only if any of those contributions is o(N). Analogous criteria are given for positive integral operators with difference kernels. Obtained results are applied to processing of stationary random signals, in particular, neutron signals emitted by boiling water nuclear reactors. 1.
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract

Cited by 522 (4 self)
 Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption
Signal recovery from random measurements via Orthogonal Matching Pursuit
 IEEE TRANS. INFORM. THEORY
, 2007
"... This technical report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over previous ..."
Abstract

Cited by 780 (9 self)
 Add to MetaCart
This technical report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Blind Beamforming for Non Gaussian Signals
 IEE ProceedingsF
, 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract

Cited by 704 (31 self)
 Add to MetaCart
This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray manifold, beamforming is made robust with respect to array deformations, distortion of the wave front, pointing errors, etc ... so that neither array calibration nor physical modeling are necessary. Rather surprisingly, `blind beamformers' may outperform `informed beamformers' in a plausible range of parameters, even when the array is perfectly known to the informed beamformer. The key assumption blind identification relies on is the statistical independence of the sources, which we exploit using fourthorder cumulants. A computationally efficient technique is presented for the blind estimation of directional vectors, based on joint diagonalization of 4thorder cumulant matrices
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 614 (80 self)
 Add to MetaCart
A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number
Attention and the detection of signals
 Journal of Experimental Psychology: General
, 1980
"... Detection of a visual signal requires information to reach a system capable of eliciting arbitrary responses required by the experimenter. Detection latencies are reduced when subjects receive a cue that indicates where in the visual field the signal will occur. This shift in efficiency appears to b ..."
Abstract

Cited by 532 (2 self)
 Add to MetaCart
Detection of a visual signal requires information to reach a system capable of eliciting arbitrary responses required by the experimenter. Detection latencies are reduced when subjects receive a cue that indicates where in the visual field the signal will occur. This shift in efficiency appears
Improved prediction of signal peptides  SignalP 3.0
 J. MOL. BIOL.
, 2004
"... We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea that the cle ..."
Abstract

Cited by 655 (7 self)
 Add to MetaCart
We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea
Predictive reward signal of dopamine neurons
 Journal of Neurophysiology
, 1998
"... Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs ..."
Abstract

Cited by 717 (12 self)
 Add to MetaCart
Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs
Results 1  10
of
1,154,544