Results 1  10
of
31,007
NonUniform Random Variate Generation
, 1986
"... This is a survey of the main methods in nonuniform random variate generation, and highlights recent research on the subject. Classical paradigms such as inversion, rejection, guide tables, and transformations are reviewed. We provide information on the expected time complexity of various algorith ..."
Abstract

Cited by 1021 (26 self)
 Add to MetaCart
algorithms, before addressing modern topics such as indirectly specified distributions, random processes, and Markov chain methods.
Shallow Parsing with Conditional Random Fields
, 2003
"... Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard evaluati ..."
Abstract

Cited by 581 (8 self)
 Add to MetaCart
Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard
A Simple Proof of the Restricted Isometry Property for Random Matrices
 CONSTR APPROX
, 2008
"... We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided algorithmical ..."
Abstract

Cited by 631 (64 self)
 Add to MetaCart
We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 639 (15 self)
 Add to MetaCart
based methods produce unreliable results. In this paper, we propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown
Fast texture synthesis using treestructured vector quantization
, 2000
"... Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given ..."
Abstract

Cited by 561 (12 self)
 Add to MetaCart
Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given
Learning in graphical models
 STATISTICAL SCIENCE
, 2004
"... Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve largescale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology for ..."
Abstract

Cited by 806 (10 self)
 Add to MetaCart
Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve largescale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology
On the Resemblance and Containment of Documents
 In Compression and Complexity of Sequences (SEQUENCES’97
, 1997
"... Given two documents A and B we define two mathematical notions: their resemblance r(A, B)andtheircontainment c(A, B) that seem to capture well the informal notions of "roughly the same" and "roughly contained." The basic idea is to reduce these issues to set intersection probl ..."
Abstract

Cited by 506 (6 self)
 Add to MetaCart
problems that can be easily evaluated by a process of random sampling that can be done independently for each document. Furthermore, the resemblance can be evaluated using a fixed size sample for each document.
The structure and function of complex networks
 SIAM REVIEW
, 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract

Cited by 2600 (7 self)
 Add to MetaCart
, including such concepts as the smallworld effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract

Cited by 533 (22 self)
 Add to MetaCart
emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudorandom computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1791 (69 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Results 1  10
of
31,007