Results 1 - 10
of
259,790
Nonparametric estimation of average treatment effects under exogeneity: a review
- REVIEW OF ECONOMICS AND STATISTICS
, 2004
"... Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogen ..."
Abstract
-
Cited by 630 (25 self)
- Add to MetaCart
Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described
How much should we trust differences-in-differences estimates?
, 2003
"... Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in state-level data on femal ..."
Abstract
-
Cited by 828 (1 self)
- Add to MetaCart
Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in state-level data
Unscented Filtering and Nonlinear Estimation
- PROCEEDINGS OF THE IEEE
, 2004
"... The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the ..."
Abstract
-
Cited by 566 (5 self)
- Add to MetaCart
The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear
Experimental Estimates of Education Production Functions
- Princeton University, Industrial Relations Section Working Paper No. 379
, 1997
"... This paper analyzes data on 11,600 students and their teachers who were randomly assigned to different size classes from kindergarten through third grade. Statistical methods are used to adjust for nonrandom attrition and transitions between classes. The main conclusions are (1) on average, performa ..."
Abstract
-
Cited by 529 (19 self)
- Add to MetaCart
This paper analyzes data on 11,600 students and their teachers who were randomly assigned to different size classes from kindergarten through third grade. Statistical methods are used to adjust for nonrandom attrition and transitions between classes. The main conclusions are (1) on average
Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods
- J. Mol. Evol
, 1994
"... Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called ..."
Abstract
-
Cited by 557 (29 self)
- Add to MetaCart
Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called
Model-Based Clustering, Discriminant Analysis, and Density Estimation
- JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract
-
Cited by 573 (29 self)
- Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However
Estimating Wealth Effects without Expenditure Data— or Tears
- Policy Research Working Paper 1980, The World
, 1998
"... Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled closely ..."
Abstract
-
Cited by 871 (16 self)
- Add to MetaCart
Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled
Pegasos: Primal Estimated sub-gradient solver for SVM
"... We describe and analyze a simple and effective stochastic sub-gradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract
-
Cited by 542 (20 self)
- Add to MetaCart
single training example. In contrast, previous analyses of stochastic gradient descent methods for SVMs require Ω(1/ɛ2) iterations. As in previously devised SVM solvers, the number of iterations also scales linearly with 1/λ, where λ is the regularization parameter of SVM. For a linear kernel, the total
Missing value estimation methods for DNA microarrays
, 2001
"... Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clu ..."
Abstract
-
Cited by 477 (24 self)
- Add to MetaCart
. In this report, we investigate automated methods for estimating missing data.
Results 1 - 10
of
259,790