Results 1  10
of
18,440
Support Vector Machine Active Learning with Applications to Text Classification
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2001
"... Support vector machines have met with significant success in numerous realworld learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using poolbased acti ..."
Abstract

Cited by 735 (5 self)
 Add to MetaCart
instances to request next. We provide a theoretical motivation for the algorithm using the notion of a version space. We present experimental results showing that employing our active learning method can significantly reduce the need for labeled training instances in both the standard inductive
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 476 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
Modeling and Forecasting Realized Volatility
, 2002
"... this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are a ..."
Abstract

Cited by 549 (50 self)
 Add to MetaCart
: a fractionallyintegrated Gaussian vector autoregression (VAR) . Importantly, our approach explicitly permits measurement errors in the realized volatilities. Comparing the resulting volatility forecasts to those obtained from currently popular daily volatility models and more complicated high
Symbolic Model Checking for Realtime Systems
 INFORMATION AND COMPUTATION
, 1992
"... We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given in an ..."
Abstract

Cited by 578 (50 self)
 Add to MetaCart
We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1345 (23 self)
 Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
From Few to many: Illumination cone models for face recognition under variable lighting and pose
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a generative appearancebased method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a smal ..."
Abstract

Cited by 754 (12 self)
 Add to MetaCart
conditions. The pose space is then sampled, and for each pose the corresponding illumination cone is approximated by a lowdimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated
Computing semantic relatedness using Wikipediabased explicit semantic analysis
 In Proceedings of the 20th International Joint Conference on Artificial Intelligence
, 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of commonsense and domainspecific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a highdimensional space of concepts derived from Wikipedi ..."
Abstract

Cited by 562 (9 self)
 Add to MetaCart
Wikipedia. We use machine learning techniques to explicitly represent the meaning of any text as a weighted vector of Wikipediabased concepts. Assessing the relatedness of texts in this space amounts to comparing the corresponding vectors using conventional metrics (e.g., cosine). Compared
Randomized kinodynamic planning
 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH 2001; 20; 378
, 2001
"... This paper presents the first randomized approach to kinodynamic planning (also known as trajectory planning or trajectory design). The task is to determine control inputs to drive a robot from an initial configuration and velocity to a goal configuration and velocity while obeying physically based ..."
Abstract

Cited by 626 (35 self)
 Add to MetaCart
dynamical models and avoiding obstacles in the robotâ€™s environment. The authors consider generic systems that express the nonlinear dynamics of a robot in terms of the robotâ€™s highdimensional configuration space. Kinodynamic planning is treated as a motionplanning problem in a higher dimensional state
Projection Pursuit Regression
 Journal of the American Statistical Association
, 1981
"... A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures, ..."
Abstract

Cited by 550 (6 self)
 Add to MetaCart
A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures
The algorithmic analysis of hybrid systems
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract

Cited by 778 (71 self)
 Add to MetaCart
to linear hybrid systems. In particular, we consider symbolic modelchecking and minimization procedures that are based on the reachability analysis of an infinite state space. The procedures iteratively compute state sets that are definable as unions of convex polyhedra in multidimensional real space. We
Results 1  10
of
18,440