Results 1  10
of
3,120,626
Polynomial time approximation schemes for Euclidean TSP and other geometric problems
 In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science (FOCS’96
, 1996
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes a ..."
Abstract

Cited by 399 (3 self)
 Add to MetaCart
to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best
TreadMarks: Distributed Shared Memory on Standard Workstations and Operating Systems
 IN PROCEEDINGS OF THE 1994 WINTER USENIX CONFERENCE
, 1994
"... TreadMarks is a distributed shared memory (DSM) system for standard Unix systems such as SunOS and Ultrix. This paper presents a performance evaluation of TreadMarks running on Ultrix using DECstation5000/240's that are connected by a 100Mbps switchbased ATM LAN and a 10Mbps Ethernet. Ou ..."
Abstract

Cited by 527 (17 self)
 Add to MetaCart
TreadMarks is a distributed shared memory (DSM) system for standard Unix systems such as SunOS and Ultrix. This paper presents a performance evaluation of TreadMarks running on Ultrix using DECstation5000/240's that are connected by a 100Mbps switchbased ATM LAN and a 10Mbps Ethernet
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
Ant Colony System: A cooperative learning approach to the traveling salesman problem
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1997
"... This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a pher ..."
Abstract

Cited by 1000 (53 self)
 Add to MetaCart
This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 822 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
Towards a Standard Upper Ontology
, 2001
"... The Suggested Upper Merged Ontology (SUMO) is an upper level ontology that has been proposed as a starter document for The Standard Upper Ontology Working Group, an IEEEsanctioned working group of collaborators from the fields of engineering, philosophy, and information science. The SUMO provides d ..."
Abstract

Cited by 576 (21 self)
 Add to MetaCart
The Suggested Upper Merged Ontology (SUMO) is an upper level ontology that has been proposed as a starter document for The Standard Upper Ontology Working Group, an IEEEsanctioned working group of collaborators from the fields of engineering, philosophy, and information science. The SUMO provides
Molecular Computation Of Solutions To Combinatorial Problems
, 1994
"... The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility of carrying ..."
Abstract

Cited by 766 (6 self)
 Add to MetaCart
The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 776 (28 self)
 Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity
The Symbol Grounding Problem
, 1990
"... There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system be m ..."
Abstract

Cited by 1072 (18 self)
 Add to MetaCart
There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Results 1  10
of
3,120,626