Results 1 - 10
of
15,805
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
- Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract
-
Cited by 1345 (23 self)
- Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
- IEEE TRANSACTIONS ON SIGNAL PROCESSING
, 2002
"... Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view o ..."
Abstract
-
Cited by 2006 (2 self)
- Add to MetaCart
of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass
Towards a Standard Upper Ontology
, 2001
"... The Suggested Upper Merged Ontology (SUMO) is an upper level ontology that has been proposed as a starter document for The Standard Upper Ontology Working Group, an IEEE-sanctioned working group of collaborators from the fields of engineering, philosophy, and information science. The SUMO provides d ..."
Abstract
-
Cited by 589 (22 self)
- Add to MetaCart
and the relations between them. Categories & Descriptors --- I.2.4 [Knowledge Representation Formalisms and Methods]: Artificial Intelligence -- representations (procedural and rule-based), semantic networks. General Terms --- Documentation, Languages, Standard-ization, Theory. Keywords --- Ontologies
Lexical-Functional Grammar: A Formal System for Grammatical Representation
- IN: FORMAL ISSUES IN LEXICAL-FUNCTIONAL GRAMMAR
, 1995
"... In learning their native language, children develop a remarkable set of capabilities. They acquire knowledge and skills that enable them to produce and comprehend an indefinite number of novel utterances, and to make quite subtle judgments about certain of their properties. The major goal of psychol ..."
Abstract
-
Cited by 609 (23 self)
- Add to MetaCart
's behavior. To a certain extent the various components that we postulate can be studied independently, guided where appropriate by the well-established methods and evaluation standards of linguistics, computer science, and experimental psychology. However, the requirement that the various components
Bayesian Model Selection in Social Research (with Discussion by Andrew Gelman & Donald B. Rubin, and Robert M. Hauser, and a Rejoinder)
- SOCIOLOGICAL METHODOLOGY 1995, EDITED BY PETER V. MARSDEN, CAMBRIDGE,; MASS.: BLACKWELLS.
, 1995
"... It is argued that P-values and the tests based upon them give unsatisfactory results, especially in large samples. It is shown that, in regression, when there are many candidate independent variables, standard variable selection procedures can give very misleading results. Also, by selecting a singl ..."
Abstract
-
Cited by 585 (21 self)
- Add to MetaCart
It is argued that P-values and the tests based upon them give unsatisfactory results, especially in large samples. It is shown that, in regression, when there are many candidate independent variables, standard variable selection procedures can give very misleading results. Also, by selecting a
Modeling and simulation of genetic regulatory systems: A literature review
- JOURNAL OF COMPUTATIONAL BIOLOGY
, 2002
"... In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between ..."
Abstract
-
Cited by 738 (14 self)
- Add to MetaCart
for the modeling and simulation of genetic regulatory networks will be indispensable. This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, in particular directed graphs, Bayesian networks, Boolean networks and their generalizations
Model selection and accounting for model uncertainty in graphical models using Occam's window
, 1993
"... We consider the problem of model selection and accounting for model uncertainty in high-dimensional contingency tables, motivated by expert system applications. The approach most used currently is a stepwise strategy guided by tests based on approximate asymptotic P-values leading to the selection o ..."
Abstract
-
Cited by 370 (47 self)
- Add to MetaCart
computing the posterior model probabilities is hard and the number of models is very large (often greater than 1011). We argue that the standard Bayesian formalism is unsatisfactory and we propose an alternative Bayesian approach that, we contend, takes full account of the true model uncertainty byaveraging
Learning probabilistic relational models
- In IJCAI
, 1999
"... A large portion of real-world data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract
-
Cited by 613 (30 self)
- Add to MetaCart
objects. Although PRMs are significantly more expressive than standard models, such as Bayesian networks, we show how to extend well-known statistical methods for learning Bayesian networks to learn these models. We describe both parameter estimation and structure learning — the automatic induction
Learning Stochastic Logic Programs
, 2000
"... Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic context-free grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a first-order r ..."
Abstract
-
Cited by 1194 (81 self)
- Add to MetaCart
-order range-restricted definite clause. This paper summarises the syntax, distributional semantics and proof techniques for SLPs and then discusses how a standard Inductive Logic Programming (ILP) system, Progol, has been modied to support learning of SLPs. The resulting system 1) nds an SLP with uniform
Network Time Protocol (Version 3) Specification, Implementation and Analysis
, 1992
"... Note: This document consists of an approximate rendering in ASCII of the PostScript document of the same name. It is provided for convenience and for use in searches, etc. However, most tables, figures, equations and captions have not been rendered and the pagination and section headings are not ava ..."
Abstract
-
Cited by 520 (18 self)
- Add to MetaCart
are not available. This document describes the Network Time Protocol (NTP), specifies its formal structure and summarizes information useful for its implementation. NTP provides the mechanisms to synchronize time and coordinate time distribution in a large, diverse internet operating at rates from mundane
Results 1 - 10
of
15,805