Results 1 - 10
of
20,050
Parallelizing Multiscale and Multigranular Spatial Data Mining Algorithms
"... Multiscale and Multigranular (MSMG) Spatial Data Mining (SDM) algorithms are used to find the best granular class label from a hierarchical set of granular class labels for spatial classification, which is important for many application domains including the military. However, it is computationally ..."
Abstract
- Add to MetaCart
Multiscale and Multigranular (MSMG) Spatial Data Mining (SDM) algorithms are used to find the best granular class label from a hierarchical set of granular class labels for spatial classification, which is important for many application domains including the military. However, it is computationally
Efficient and Effective Clustering Methods for Spatial Data Mining
, 1994
"... Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. In this paper, we explore whether clustering methods have a role to play in spatial data mining. To this end, we develop a new clustering method called CLARANS which ..."
Abstract
-
Cited by 709 (37 self)
- Add to MetaCart
is based on randomized search. We also de- velop two spatial data mining algorithms that use CLARANS. Our analysis and experiments show that with the assistance of CLARANS, these two algorithms are very effective and can lead to discoveries that are difficult to find with current spatial data mining
Privacy Preserving Data Mining
- JOURNAL OF CRYPTOLOGY
, 2000
"... In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated b ..."
Abstract
-
Cited by 525 (9 self)
- Add to MetaCart
In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated
Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets
, 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several ..."
Abstract
-
Cited by 502 (22 self)
- Add to MetaCart
A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract
-
Cited by 533 (22 self)
- Add to MetaCart
analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated
From Data Mining to Knowledge Discovery in Databases.
- AI Magazine,
, 1996
"... ■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in database ..."
Abstract
-
Cited by 538 (0 self)
- Add to MetaCart
brief summary of recent KDD real-world applications is provided. Definitions of KDD and data mining are provided, and the general multistep KDD process is outlined. This multistep process has the application of data-mining algorithms as one particular step in the process. The data-mining step
Mining Sequential Patterns
, 1995
"... We are given a large database of customer transactions, where each transaction consists of customer-id, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem, and empiri ..."
Abstract
-
Cited by 1568 (6 self)
- Add to MetaCart
We are given a large database of customer transactions, where each transaction consists of customer-id, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem
A density-based algorithm for discovering clusters in large spatial databases with noise
, 1996
"... Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clu ..."
Abstract
-
Cited by 1786 (70 self)
- Add to MetaCart
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery
CURE: An Efficient Clustering Algorithm for Large Data sets
- Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract
-
Cited by 722 (5 self)
- Add to MetaCart
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new
Data Preparation for Mining World Wide Web Browsing Patterns
- KNOWLEDGE AND INFORMATION SYSTEMS
, 1999
"... The World Wide Web (WWW) continues to grow at an astounding rate in both the sheer volume of tra#c and the size and complexity of Web sites. The complexity of tasks such as Web site design, Web server design, and of simply navigating through a Web site have increased along with this growth. An i ..."
Abstract
-
Cited by 567 (43 self)
- Add to MetaCart
is the application of data mining techniques to usage logs of large Web data repositories in order to produce results that can be used in the design tasks mentioned above. However, there are several preprocessing tasks that must be performed prior to applying data mining algorithms to the data collected from
Results 1 - 10
of
20,050