Results 1  10
of
5,858
Solution of Practical Power Networks with Sparse Techniques
, 2016
"... NewtonRaphson UPFC model for power flow solution of practical power networks with sparse techniques ..."
Abstract
 Add to MetaCart
NewtonRaphson UPFC model for power flow solution of practical power networks with sparse techniques
Nonnegative matrix factorization with sparseness constraints,”
 Journal of Machine Learning Research,
, 2004
"... Abstract Nonnegative matrix factorization (NMF) is a recently developed technique for finding partsbased, linear representations of nonnegative data. Although it has successfully been applied in several applications, it does not always result in partsbased representations. In this paper, we sho ..."
Abstract

Cited by 498 (0 self)
 Add to MetaCart
Abstract Nonnegative matrix factorization (NMF) is a recently developed technique for finding partsbased, linear representations of nonnegative data. Although it has successfully been applied in several applications, it does not always result in partsbased representations. In this paper, we
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract

Cited by 539 (17 self)
 Add to MetaCart
Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 935 (41 self)
 Add to MetaCart
by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse
Laplacian eigenmaps and spectral techniques for embedding and clustering.
 Proceeding of Neural Information Processing Systems,
, 2001
"... Abstract Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in ..."
Abstract

Cited by 668 (7 self)
 Add to MetaCart
of the manifold on which the data may possibly reside. Recently, there has been some interest (Tenenbaum et aI, 2000 ; The core algorithm is very simple, has a few local computations and one sparse eigenvalu e problem. The solution reflects th e intrinsic geom etric structure of the manifold. Th e justification
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (23 self)
 Add to MetaCart
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We
Photo tourism: Exploring photo collections in 3D
 IN PROC. ACM SIGGRAPH
, 2006
"... We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an imagebased modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of th ..."
Abstract

Cited by 677 (37 self)
 Add to MetaCart
We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an imagebased modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 568 (10 self)
 Add to MetaCart
. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues
Large steps in cloth simulation
 SIGGRAPH 98 Conference Proceedings
, 1998
"... The bottleneck in most cloth simulation systems is that time steps must be small to avoid numerical instability. This paper describes a cloth simulation system that can stably take large time steps. The simulation system couples a new technique for enforcing constraints on individual cloth particle ..."
Abstract

Cited by 576 (5 self)
 Add to MetaCart
The bottleneck in most cloth simulation systems is that time steps must be small to avoid numerical instability. This paper describes a cloth simulation system that can stably take large time steps. The simulation system couples a new technique for enforcing constraints on individual cloth
Results 1  10
of
5,858