• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 4,167
Next 10 →

Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding

by Richard S. Sutton - Advances in Neural Information Processing Systems 8 , 1996
"... On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have ..."
Abstract - Cited by 433 (20 self) - Add to MetaCart
the control tasks they attempted, and for one that is significantly larger. The most important differences are that we used sparse-coarse-coded function approximators (CMACs) whereas they used mostly global function approximators, and that we learned online whereas they learned offline. Boyan and Moore

Efficient sparse coding algorithms

by Honglak Lee, Alexis Battle, Rajat Raina, Andrew Y. Ng - In NIPS , 2007
"... Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given only unlabeled input data, it discovers basis functions that capture higher-level features in the data. However, finding sparse codes remains a very difficult computational problem. In this paper, we ..."
Abstract - Cited by 445 (14 self) - Add to MetaCart
Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given only unlabeled input data, it discovers basis functions that capture higher-level features in the data. However, finding sparse codes remains a very difficult computational problem. In this paper, we

Good Error-Correcting Codes based on Very Sparse Matrices

by David J.C. MacKay , 1999
"... We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract - Cited by 750 (23 self) - Add to MetaCart
We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties

Sparse coding with an overcomplete basis set: a strategy employed by V1

by Bruno A. Olshausen, David J. Fieldt - Vision Research , 1997
"... The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive f ..."
Abstract - Cited by 958 (9 self) - Add to MetaCart
field properties may be accounted for in terms of a strategy for producing a sparse distribution of output activity in response to natural images. Here, in addition to describing this work in a more expansive fashion, we examine the neurobiological implications of sparse coding. Of particular interest

Linear spatial pyramid matching using sparse coding for image classification

by Jianchao Yang, Kai Yu, Yihong Gong, Thomas Huang - in IEEE Conference on Computer Vision and Pattern Recognition(CVPR , 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract - Cited by 497 (21 self) - Add to MetaCart
the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably

Non-negative matrix factorization with sparseness constraints,”

by Patrik O Hoyer , Patrik Hoyer@helsinki , Fi - Journal of Machine Learning Research, , 2004
"... Abstract Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we sho ..."
Abstract - Cited by 498 (0 self) - Add to MetaCart
show how explicitly incorporating the notion of 'sparseness' improves the found decompositions. Additionally, we provide complete MATLAB code both for standard NMF and for our extension. Our hope is that this will further the application of these methods to solving novel data

K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

by Michal Aharon, et al. , 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract - Cited by 935 (41 self) - Add to MetaCart
that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update of the sparse representations, thereby accelerating convergence. The K-SVD algorithm

Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise

by Joel A. Tropp , 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract - Cited by 483 (2 self) - Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure

The "Independent Components" of Natural Scenes are Edge Filters

by Anthony J. Bell, Terrence J. Sejnowski , 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract - Cited by 617 (29 self) - Add to MetaCart
It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm

Decoding by Linear Programming

by Emmanuel J. Candès, Terence Tao , 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract - Cited by 1399 (16 self) - Add to MetaCart
This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible
Next 10 →
Results 1 - 10 of 4,167
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University