Results 1  10
of
7,504
Dynamic supernodes in sparse Cholesky update/downdate and triangular solves
 ACM Trans. Math. Software
, 2006
"... The supernodal method for sparse Cholesky factorization represents the factor L as a set of supernodes, each consisting of a contiguous set of columns of L with identical nonzero pattern. A conventional supernode is stored as a dense submatrix. While this is suitable for sparse Cholesky factorizatio ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
factorization where the nonzero pattern of L does not change, it is not suitable for methods that modify a sparse Cholesky factorization after a lowrank change to A (an update/downdate, A = A±WW T). Supernodes merge and split apart during an update/downdate. Dynamic supernodes are introduced, which allow a
Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate
 ACM Transactions on Mathematical Software
, 2008
"... CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or A A T, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for b ..."
Abstract

Cited by 109 (8 self)
 Add to MetaCart
CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or A A T, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
derivatives are available, and that the constraint gradients are sparse. We discuss
The SPLASH2 programs: Characterization and methodological considerations
 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE
, 1995
"... The SPLASH2 suite of parallel applications has recently been released to facilitate the study of centralized and distributed sharedaddressspace multiprocessors. In this context, this paper has two goals. One is to quantitatively characterize the SPLASH2 programs in terms of fundamental propertie ..."
Abstract

Cited by 1399 (12 self)
 Add to MetaCart
The SPLASH2 suite of parallel applications has recently been released to facilitate the study of centralized and distributed sharedaddressspace multiprocessors. In this context, this paper has two goals. One is to quantitatively characterize the SPLASH2 programs in terms of fundamental properties and architectural interactions that are important to understand them well. The properties we study include the computational load balance, communication to computation ratio and traffic needs, important working set sizes, and issues related to spatial locality, as well as how these properties scale with problem size and the number of processors. The other, related goal is methodological: to assist people who will use the programs in architectural evaluations to prune the space of application and machine parameters in an informed and meaningful way. For example, by characterizing the working sets of the applications, we describe which operating points in terms of cache size and problem size are representative of realistic situations, which are not, and which re redundant. Using SPLASH2 as an example, we hope to convey the importance of understanding the interplay of problem size, number of processors, and working sets in designing experiments and interpreting their results.
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work. Supervised learning in the form of regression (for continuous outputs) and classification (for discrete outputs) is an important constituent of statistics and machine learning, either for analysis of data sets, or as a subgoal of a more complex problem. Traditionally parametric 1 models have been used for this purpose. These have a possible advantage in ease of interpretability, but for complex data sets, simple parametric models may lack expressive power, and their more complex counterparts (such as feed forward neural networks) may not be easy to work with
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Results 1  10
of
7,504