Results 1  10
of
6,393
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract

Cited by 966 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ¹ minimization
 PROC. NATL ACAD. SCI. USA 100 2197–202
, 2002
"... Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered ..."
Abstract

Cited by 633 (38 self)
 Add to MetaCart
Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work
Linear spatial pyramid matching using sparse coding for image classification
 in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract

Cited by 497 (21 self)
 Add to MetaCart
the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multiscale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
 ADVANCES IN LARGE MARGIN CLASSIFIERS
, 1999
"... The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. Howev ..."
Abstract

Cited by 1051 (0 self)
 Add to MetaCart
. However, training with a maximum likelihood score will produce nonsparse kernel machines. Instead, we train an SVM, then train the parameters of an additional sigmoid function to map the SVM outputs into probabilities. This chapter compares classification error rate and likelihood scores for an SVM plus
Knowledgebased Analysis of Microarray Gene Expression Data By Using Support Vector Machines
, 2000
"... We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of ..."
Abstract

Cited by 520 (8 self)
 Add to MetaCart
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 476 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
LIBLINEAR: A Library for Large Linear Classification
, 2008
"... LIBLINEAR is an open source library for largescale linear classification. It supports logistic regression and linear support vector machines. We provide easytouse commandline tools and library calls for users and developers. Comprehensive documents are available for both beginners and advanced u ..."
Abstract

Cited by 1416 (41 self)
 Add to MetaCart
LIBLINEAR is an open source library for largescale linear classification. It supports logistic regression and linear support vector machines. We provide easytouse commandline tools and library calls for users and developers. Comprehensive documents are available for both beginners and advanced
Sequential minimal optimization: A fast algorithm for training support vector machines
 Advances in Kernel MethodsSupport Vector Learning
, 1999
"... This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possi ..."
Abstract

Cited by 461 (3 self)
 Add to MetaCart
This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n
Results 1  10
of
6,393