Results 1 - 10
of
54,657
The space complexity of approximating the frequency moments
- JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract
-
Cited by 845 (12 self)
- Add to MetaCart
, it turns out that the numbers F0, F1 and F2 can be approximated in logarithmic space, whereas the approximation of Fk for k ≥ 6 requires nΩ(1) space. Applications to data bases are mentioned as well.
Actions as space-time shapes
- IN ICCV
, 2005
"... Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as three-dimensional shapes induced by the silhouettes in the space-time volume. We adopt a recent approach [14] for analyzing 2D shapes and genera ..."
Abstract
-
Cited by 651 (4 self)
- Add to MetaCart
Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as three-dimensional shapes induced by the silhouettes in the space-time volume. We adopt a recent approach [14] for analyzing 2D shapes
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract
-
Cited by 533 (22 self)
- Add to MetaCart
emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic
Network Applications of Bloom Filters: A Survey
- INTERNET MATHEMATICS
, 2002
"... A Bloomfilter is a simple space-efficient randomized data structure for representing a set in order to support membership queries. Bloom filters allow false positives but the space savings often outweigh this drawback when the probability of an error is controlled. Bloom filters have been used in ..."
Abstract
-
Cited by 522 (17 self)
- Add to MetaCart
A Bloomfilter is a simple space-efficient randomized data structure for representing a set in order to support membership queries. Bloom filters allow false positives but the space savings often outweigh this drawback when the probability of an error is controlled. Bloom filters have been used
Mean shift: A robust approach toward feature space analysis
- In PAMI
, 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract
-
Cited by 2395 (37 self)
- Add to MetaCart
A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data
M-tree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called M-tree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract
-
Cited by 663 (38 self)
- Add to MetaCart
are reported, considering as th performance criteria th number of page I/O's and th number of distance computations. Th results demonstratethm th Mtree indeed extendsth domain of applicability beyond th traditional vector spaces, performs reasonably well inhE[94Kv#E44V[vh data spaces, and scales well
The geometry of graphs and some of its algorithmic applications
- COMBINATORICA
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graph-theoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract
-
Cited by 524 (19 self)
- Add to MetaCart
that respect the metric of the (possibly weighted) graph. Given a graph G we map its vertices to a normed space in an attempt to (i) Keep down the dimension of the host space and (ii) Guarantee a small distortion, i.e., make sure that distances between vertices in G closely match the dis-tances between
Distance metric learning, with application to clustering with sideinformation,”
- in Advances in Neural Information Processing Systems 15,
, 2002
"... Abstract Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may be for ..."
Abstract
-
Cited by 818 (13 self)
- Add to MetaCart
be for the user to manually tweak the input space's metric until sufficiently good clusters are found. For these and other applications requiring good metrics, it is desirable that we provide a more systematic way for users to indicate what they consider "similar." For instance, we may ask them
Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging
- MAGNETIC RESONANCE IN MEDICINE 58:1182–1195
, 2007
"... The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit ..."
Abstract
-
Cited by 538 (11 self)
- Add to MetaCart
The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial
Support Vector Machine Active Learning with Applications to Text Classification
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2001
"... Support vector machines have met with significant success in numerous real-world learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool-based acti ..."
Abstract
-
Cited by 735 (5 self)
- Add to MetaCart
instances to request next. We provide a theoretical motivation for the algorithm using the notion of a version space. We present experimental results showing that employing our active learning method can significantly reduce the need for labeled training instances in both the standard inductive
Results 1 - 10
of
54,657