• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 27,196
Next 10 →

SYMMETRIES OF EQUATIONS CONTAINING A SMALL PARAMETER

by Alexey V. Samokhin, Alexey V. Samokhin , 1998
"... Symmetries of equations containing a small parameter by ..."
Abstract - Add to MetaCart
Symmetries of equations containing a small parameter by

Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled Time Series Tests, With an Application to the PPP Hypothesis; New Results. Working paper

by Peter Pedroni , 1997
"... We examine properties of residual-based tests for the null of no cointegration for dynamic panels in which both the short-run dynamics and the long-run slope coefficients are permitted to be heterogeneous across individual members of the panel+ The tests also allow for individual heterogeneous fixed ..."
Abstract - Cited by 529 (13 self) - Add to MetaCart
fixed effects and trend terms, and we consider both pooled within dimension tests and group mean between dimension tests+ We derive limiting distributions for these and show that they are normal and free of nuisance parameters+ We also provide Monte Carlo evidence to demonstrate their small sample size

Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories

by Li Fei-fei , 2004
"... Abstract — Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been te ..."
Abstract - Cited by 784 (16 self) - Add to MetaCart
proposed method is based on making use of prior information, assembled from (unrelated) object categories which were previously learnt. A generative probabilistic model is used, which represents the shape and appearance of a constellation of features belonging to the object. The parameters of the model

The geometry of graphs and some of its algorithmic applications

by Nathan Linial, Eran London, Yuri Rabinovich - COMBINATORICA , 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graph-theoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract - Cited by 524 (19 self) - Add to MetaCart
-tensions. 0 For graphs embeddable in low-dimensional spaces with a small distortion, we can find low-diameter decompositions (in the sense of [4] and [34]). The parameters of the decomposition depend only on the dimension and the distortion and not on the size of the graph. 0 In graphs embedded this way

Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations

by Jure Leskovec, Jon Kleinberg, Christos Faloutsos , 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract - Cited by 541 (48 self) - Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include

Income and Wealth Heterogeneity in the Macroeconomy,

by Per Krusell , Anthony A Smith Jr , Mark Huggett , Robert Lucas , Víctor Ríos-Rull , Tom Sargent , José Scheinkman , Chris Telmer , Stan Zin - Journal of Political Economy , 1998
"... How do movements in the distribution of income and wealth affect the macroeconomy? We analyze this question using a calibrated version of the stochastic growth model with partially uninsurable idiosyncratic risk and movements in aggregate productivity. Our main finding is that, in the stationary st ..."
Abstract - Cited by 678 (11 self) - Add to MetaCart
stochastic equilibrium, the behavior of the macroeconomic aggregates can be almost perfectly described using only the mean of the wealth distribution. This result is robust to substantial changes in both parameter values and model specification. Our benchmark model, whose only difference from

The Cache Performance and Optimizations of Blocked Algorithms

by Monica S. Lam, Edward E. Rothberg, Michael E. Wolf - In Proceedings of the Fourth International Conference on Architectural Support for Programming Languages and Operating Systems , 1991
"... Blocking is a well-known optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused. This ..."
Abstract - Cited by 574 (5 self) - Add to MetaCart
given cache size, the block size that minimizes the expected number of cache misses is very small. Tailoring the block size according to the matrix size and cache parameters can improve the average performance and reduce the variance in performance for different matrix sizes. Finally, whenever possible

Tinysec: A link layer security architecture for wireless sensor networks

by Chris Karlof, Naveen Sastry, David Wagner - in Proc of the 2nd Int’l Conf on Embedded Networked Sensor Systems
"... We introduce TinySec, the first fully-implemented link layer security architecture for wireless sensor networks. In our design, we leverage recent lessons learned from design vulnerabilities in security protocols for other wireless networks such as 802.11b and GSM. Conventional security protocols te ..."
Abstract - Cited by 521 (0 self) - Add to MetaCart
tend to be conservative in their security guarantees, typically adding 16–32 bytes of overhead. With small memories, weak processors, limited energy, and 30 byte packets, sensor networks cannot afford this luxury. TinySec addresses these extreme resource constraints with careful design; we explore

Prior distributions for variance parameters in hierarchical models

by Andrew Gelman - Bayesian Analysis , 2006
"... Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-t family of conditionally conjugate priors for hierarchical standard deviation parameters, and then consider noninformative and weakly informative priors i ..."
Abstract - Cited by 430 (15 self) - Add to MetaCart
Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-t family of conditionally conjugate priors for hierarchical standard deviation parameters, and then consider noninformative and weakly informative priors

Scalable molecular dynamics with NAMD.

by James C Phillips , Rosemary Braun , Wei Wang , James Gumbart , Emad Tajkhorshid , Elizabeth Villa , Christophe Chipot , Robert D Skeel , Laxmikant Kalé , Klaus Schulten - J Comput Chem , 2005
"... Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and la ..."
Abstract - Cited by 849 (63 self) - Add to MetaCart
and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion
Next 10 →
Results 1 - 10 of 27,196
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University