Results 1  10
of
27,311
Fisher Discriminant Analysis With Kernels
, 1999
"... A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision f ..."
Abstract

Cited by 503 (18 self)
 Add to MetaCart
A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
The pyramid match kernel: Discriminative classification with sets of image features
 IN ICCV
, 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernelbased classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract

Cited by 544 (29 self)
 Add to MetaCart
for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multiresolution histograms and computes a weighted histogram intersection in this space. This “pyramid match” computation is linear
A LinearTime Heuristic for Improving Network Partitions
, 1982
"... An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning. To d ..."
Abstract

Cited by 524 (0 self)
 Add to MetaCart
An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning
Linear spatial pyramid matching using sparse coding for image classification
 in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract

Cited by 497 (21 self)
 Add to MetaCart
the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multiscale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably
Automatically tuned linear algebra software
 CONFERENCE ON HIGH PERFORMANCE NETWORKING AND COMPUTING
, 1998
"... This paper describes an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. The production of such software for machines ranging from desktop workstations to embedded processors can be a tedious and ..."
Abstract

Cited by 478 (26 self)
 Add to MetaCart
and time consuming process. The work described here can help in automating much of this process. We will concentrate our e orts on the widely used linear algebra kernels called the Basic Linear Algebra Subroutines (BLAS). In particular, the work presented here is for general matrix multiply, DGEMM. However
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
 Stat. Appl. Genet. Mol. Biol.
, 2004
"... Abstract The problem of identifying differentially expressed genes in designed microarray experiments is considered. Lonnstedt and Speed (2002) derived an expression for the posterior odds of differential expression in a replicated twocolor experiment using a simple hierarchical parametric model. ..."
Abstract

Cited by 1321 (24 self)
 Add to MetaCart
. The purpose of this paper is to develop the hierarchical model of Lonnstedt and Speed (2002) into a practical approach for general microarray experiments with arbitrary numbers of treatments and RNA samples. The model is reset in the context of general linear models with arbitrary coefficients and contrasts
Multiple kernel learning, conic duality, and the SMO algorithm
 In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract

Cited by 445 (31 self)
 Add to MetaCart
that the optimization of the coefficients of such a combination reduces to a convex optimization problem known as a quadraticallyconstrained quadratic program (QCQP). Unfortunately, current convex optimization toolboxes can solve this problem only for a small number of kernels and a small number of data points
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 542 (20 self)
 Add to MetaCart
single training example. In contrast, previous analyses of stochastic gradient descent methods for SVMs require Ω(1/ɛ2) iterations. As in previously devised SVM solvers, the number of iterations also scales linearly with 1/λ, where λ is the regularization parameter of SVM. For a linear kernel, the total
A tutorial on support vector machines for pattern recognition
 Data Mining and Knowledge Discovery
, 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract

Cited by 3393 (12 self)
 Add to MetaCart
The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when
Results 1  10
of
27,311