Results 1  10
of
4,576,959
A Fast Quantum Mechanical Algorithm for Database Search
 ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract

Cited by 1126 (10 self)
 Add to MetaCart
superposition of states and simultaneously examine multiple names. By properly adjusting the phases of various operations, successful computations reinforce each other while others interfere randomly. As a result, the desired phone number can be obtained in only steps. The algorithm is within a small constant
Implementing data cubes efficiently
 In SIGMOD
, 1996
"... Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like total ..."
Abstract

Cited by 545 (1 self)
 Add to MetaCart
to materialize. The greedy algorithm performs within a small constant factor of optimal under a variety of models. We then consider the most common case of the hypercube lattice and examine the choice of materialized views for hypercubes in detail, giving some good tradeoffs between the space used
Determining the Number of Factors in Approximate Factor Models
, 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract

Cited by 538 (29 self)
 Add to MetaCart
of the number of factors for configurations of the panel data encountered in practice. The idea that variations in a large number of economic variables can be modelled bya small number of reference variables is appealing and is used in manyeconomic analysis. In the finance literature, the arbitrage pricing
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null
Small Byzantine Quorum Systems
 DISTRIBUTED COMPUTING
, 2001
"... In this paper we present two protocols for asynchronous Byzantine Quorum Systems (BQS) built on top of reliable channelsone for selfverifying data and the other for any data. Our protocols tolerate Byzantine failures with fewer servers than existing solutions by eliminating nonessential work in ..."
Abstract

Cited by 483 (49 self)
 Add to MetaCart
In this paper we present two protocols for asynchronous Byzantine Quorum Systems (BQS) built on top of reliable channelsone for selfverifying data and the other for any data. Our protocols tolerate Byzantine failures with fewer servers than existing solutions by eliminating nonessential work in the write protocol and by using read and write quorums of different sizes. Since engineering a reliable network layer on an unreliable network is difficult, two other possibilities must be explored. The first is to strengthen the model by allowing synchronous networks that use timeouts to identify failed links or machines. We consider running synchronous and asynchronous Byzantine Quorum protocols over synchronous networks and conclude that, surprisingly, "selftiming" asynchronous Byzantine protocols may offer significant advantages for many synchronous networks when network timeouts are long. We show how to extend an existing Byzantine Quorum protocol to eliminate its dependency on reliable networking and to handle message loss and retransmission explicitly.
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Factoring polynomials with rational coefficients
 MATH. ANN
, 1982
"... In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomia ..."
Abstract

Cited by 982 (11 self)
 Add to MetaCart
to be factored, n = deg(f) is the degree of f, and for a polynomial ~ a ~ i with real coefficients a i. i An outline of the algorithm is as follows. First we find, for a suitable small prime number p, a padic irreducible factor h of f, to a certain precision. This is done with Berlekamp's algorithm
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
Improving DirectMapped Cache Performance by the Addition of a Small FullyAssociative Cache and Prefetch Buffers
, 1990
"... ..."
GPSless Low Cost Outdoor Localization For Very Small Devices
, 2000
"... Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of water and soil, requires that these nodes be very small, light, untethered and unobtrusive. The problem of localization, i.e., determining where a given no ..."
Abstract

Cited by 994 (29 self)
 Add to MetaCart
node is physically located in a network is a challenging one, and yet extremely crucial for many of these applications. Practical considerations such as the small size, form factor, cost and power constraints of nodes preclude the reliance on GPS (Global Positioning System) on all nodes
Results 1  10
of
4,576,959