Results 1  10
of
134,450
Search costs in quadtrees and singularity perturbation asymptotics
 Discrete Comput. Geom
, 1994
"... Abstract. Quadtrees constitute a classical data structure for storing and accessing collections of points in multidimensional space. It is proved that, in any dimension, the cost of a random search in a randomly grown quadtree has logarithmic mean and variance and is asymptotically distributed as a ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
normal variable. The limit distribution property extends to quadtrees of all dimensions a result only known so far to hold for binary search trees. The analysis is based on a technique of singularity perturbation that appears to be of some generality. For quadtrees, this technique is applied to linear
Singular Combinatorics
 ICM 2002 VOL. III 13
, 2002
"... Combinatorial enumeration leads to counting generating functions presenting a wide variety of analytic types. Properties of generating functions at singularities encode valuable information regarding asymptotic counting and limit probability distributions present in large random structures. " ..."
Abstract

Cited by 800 (10 self)
 Add to MetaCart
Combinatorial enumeration leads to counting generating functions presenting a wide variety of analytic types. Properties of generating functions at singularities encode valuable information regarding asymptotic counting and limit probability distributions present in large random structures
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 907 (36 self)
 Add to MetaCart
and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A
A multilinear singular value decomposition
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc., are ..."
Abstract

Cited by 472 (22 self)
 Add to MetaCart
Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5411 (68 self)
 Add to MetaCart
was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory
Noncommutative Perturbative Dynamics
 hepth/9912072; M. Van Raamsdonk and N. Seiberg, “Comments On Noncommutative Perturbative Dynamics,” JHEP 0003 (2000) 035, hepth/0002186
"... We study the perturbative dynamics of noncommutative field theories on Rd, and find an intriguing mixing of the UV and the IR. High energies of virtual particles in loops produce nonanalyticity at low momentum. Consequently, the low energy effective action is singular at zero momentum even when the ..."
Abstract

Cited by 364 (1 self)
 Add to MetaCart
We study the perturbative dynamics of noncommutative field theories on Rd, and find an intriguing mixing of the UV and the IR. High energies of virtual particles in loops produce nonanalyticity at low momentum. Consequently, the low energy effective action is singular at zero momentum even when
An autoregressive distributed lag modelling approach to cointegration analysis
 Cambridge University
, 1999
"... This paper examines the use of autoregressive distributed lag (ARDL) models for the analysis of longrun relations when the underlying variables are I(1). It shows that after appropriate augmentation of the order of the ARDL model, the OLS estimators of the shortrun parameters are p Tconsistent wi ..."
Abstract

Cited by 393 (6 self)
 Add to MetaCart
consistent with the asymptotically singular covariance matrix, and the ARDLbased estimators of the longrun coe¢cients are superconsistent, and valid inferences on the longrun parameters can be made using standard normal asymptotic theory. The paper also examines the relationship between the ARDL procedure and the fully modi…ed
A VectorPerturbation technique for NearCapacity . . .
 IEEE TRANS. COMMUN
, 2005
"... Recent theoretical results describing the sum capacity when using multiple antennas to communicate with multiple users in a known rich scattering environment have not yet been followed with practical transmission schemes that achieve this capacity. We introduce a simple encoding algorithm that achi ..."
Abstract

Cited by 323 (10 self)
 Add to MetaCart
that achieves nearcapacity at sum rates of tens of bits/channel use. The algorithm is a variation on channel inversion that regularizes the inverse and uses a “sphere encoder ” to perturb the data to reduce the power of the transmitted signal. This paper is comprised of two parts. In this first part, we show
Results 1  10
of
134,450