Results 1  10
of
3,722,778
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Probabilistic Principal Component Analysis
 Journal of the Royal Statistical Society, Series B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 703 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation
EEGLAB: an open source toolbox for analysis of singletrial EEG dynamics including independent component analysis
 J. Neurosci. Methods
"... Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of singletrial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event i ..."
Abstract

Cited by 836 (44 self)
 Add to MetaCart
Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of singletrial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 537 (6 self)
 Add to MetaCart
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Recognitionbycomponents: A theory of human image understanding
 Psychological Review
, 1987
"... The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recog ..."
Abstract

Cited by 1221 (23 self)
 Add to MetaCart
The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory
Efficiently computing static single assignment form and the control dependence graph
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1991
"... In optimizing compilers, data structure choices directly influence the power and efficiency of practical program optimization. A poor choice of data structure can inhibit optimization or slow compilation to the point that advanced optimization features become undesirable. Recently, static single ass ..."
Abstract

Cited by 997 (8 self)
 Add to MetaCart
In optimizing compilers, data structure choices directly influence the power and efficiency of practical program optimization. A poor choice of data structure can inhibit optimization or slow compilation to the point that advanced optimization features become undesirable. Recently, static single
Realtime human pose recognition in parts from single depth images
 In In CVPR, 2011. 3
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract

Cited by 550 (19 self)
 Add to MetaCart
We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation
, 2002
"... There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is ..."
Abstract

Cited by 699 (9 self)
 Add to MetaCart
There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes normalization methods that are based on robust local regression and account for intensity and spatial dependence in dye biases for different types of cDNA microarray experiments. The selection of appropriate controls for normalization is discussed and a novel set of controls (microarray sample pool, MSP) is introduced to aid in intensitydependent normalization. Lastly, to allow for comparisons of expression levels across slides, a robust method based on maximum likelihood estimation is proposed to adjust for scale differences among slides.
Results 1  10
of
3,722,778