Results 1  10
of
18,496
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5411 (68 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 873 (26 self)
 Add to MetaCart
by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1399 (16 self)
 Add to MetaCart
for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant
Global Optimization with Polynomials and the Problem of Moments
 SIAM JOURNAL ON OPTIMIZATION
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear ma ..."
Abstract

Cited by 577 (48 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Robust convex optimization
 Mathematics of Operations Research
, 1998
"... We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we la ..."
Abstract

Cited by 416 (21 self)
 Add to MetaCart
We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we
Convex Position Estimation in Wireless Sensor Networks
"... A method for estimating unknown node positions in a sensor network based exclusively on connectivityinduced constraints is described. Known peertopeer communication in the network is modeled as a set of geometric constraints on the node positions. The global solution of a feasibility problem fo ..."
Abstract

Cited by 493 (0 self)
 Add to MetaCart
A method for estimating unknown node positions in a sensor network based exclusively on connectivityinduced constraints is described. Known peertopeer communication in the network is modeled as a set of geometric constraints on the node positions. The global solution of a feasibility problem
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based ..."
Abstract

Cited by 572 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 483 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Valuing American options by simulation: A simple leastsquares approach
 Review of Financial Studies
, 2001
"... This article presents a simple yet powerful new approach for approximating the value of America11 options by simulation. The kcy to this approach is the use of least squares to estimate the conditional expected payoff to the optionholder from continuation. This makes this approach readily applicable ..."
Abstract

Cited by 517 (9 self)
 Add to MetaCart
factor string model of the term structure. One of the most important problems in option pricing theory is the valuation and optimal exercise of derivatives with Americanstyle exercise features. These types of derivatives are found in all major financial markets including the equity, commodity, foreign
Finitetime analysis of the multiarmed bandit problem
 Machine Learning
, 2002
"... Abstract. Reinforcement learning policies face the exploration versus exploitation dilemma, i.e. the search for a balance between exploring the environment to find profitable actions while taking the empirically best action as often as possible. A popular measure of a policy’s success in addressing ..."
Abstract

Cited by 817 (15 self)
 Add to MetaCart
this dilemma is the regret, that is the loss due to the fact that the globally optimal policy is not followed all the times. One of the simplest examples of the exploration/exploitation dilemma is the multiarmed bandit problem. Lai and Robbins were the first ones to show that the regret for this problem has
Results 1  10
of
18,496