Results 1  10
of
282,239
Attention, similarity, and the identificationCategorization Relationship
, 1986
"... A unified quantitative approach to modeling subjects ' identification and categorization of multidimensional perceptual stimuli is proposed and tested. Two subjects identified and categorized the same set of perceptually confusable stimuli varying on separable dimensions. The identification dat ..."
Abstract

Cited by 690 (28 self)
 Add to MetaCart
, because of the influence of selective attention, similarity relationships change systematically across the two paradigms. Some support was gained for the hypothesis that subjects distribute attention among component dimensions so as to optimize categorization performance. Evidence was also obtained
Some optimal inapproximability results
, 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract

Cited by 751 (11 self)
 Add to MetaCart
We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds
Similarity of Color Images
, 1995
"... We describe two new color indexing techniques. The first one is a more robust version of the commonly used color histogram indexing. In the index we store the cumulative color histograms. The L 1 , L 2 , or L1 distance between two cumulative color histograms can be used to define a similarity mea ..."
Abstract

Cited by 495 (2 self)
 Add to MetaCart
We describe two new color indexing techniques. The first one is a more robust version of the commonly used color histogram indexing. In the index we store the cumulative color histograms. The L 1 , L 2 , or L1 distance between two cumulative color histograms can be used to define a similarity
Automatic Retrieval and Clustering of Similar Words
, 1998
"... greatest challenges in natural language learning. We first define a word similarity measure based on the distributional pattern of words. The similarity measure allows us to construct a thesaurus using a parsed corpus. We then present a new evaluation methodology for the automatically constructed th ..."
Abstract

Cited by 943 (15 self)
 Add to MetaCart
greatest challenges in natural language learning. We first define a word similarity measure based on the distributional pattern of words. The similarity measure allows us to construct a thesaurus using a parsed corpus. We then present a new evaluation methodology for the automatically constructed
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 515 (19 self)
 Add to MetaCart
the sequences and e ciently answer similarity queries. We provide experimental results which show that our method is superior to search based on sequential scanning. Our experiments show that a few coefficients (13) are adequate to provide good performance. The performance gain of our method increases
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 873 (26 self)
 Add to MetaCart
by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 547 (12 self)
 Add to MetaCart
mechanical way to algorithms for SDP with proofs of convergence and polynomial time complexity also carrying over in a similar fashion. Finally we study the significance of these results in a variety of combinatorial optimization problems including the general 01 integer programs, the maximum clique
No Free Lunch Theorems for Optimization
, 1997
"... A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of “no free lunch ” (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performan ..."
Abstract

Cited by 961 (10 self)
 Add to MetaCart
by performance over another class. These theorems result in a geometric interpretation of what it means for an algorithm to be well suited to an optimization problem. Applications of the NFL theorems to informationtheoretic aspects of optimization and benchmark measures of performance are also presented. Other
Learnability in Optimality Theory
, 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract

Cited by 529 (35 self)
 Add to MetaCart
In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 663 (38 self)
 Add to MetaCart
of objects and split management, whF h keep th Mtree always balanced  severalheralvFV split alternatives are considered and experimentally evaluated. Algorithd for similarity (range and knearest neigh bors) queries are also described. Results from extensive experimentationwith a prototype system
Results 1  10
of
282,239