Results 1  10
of
552,928
Minimum Cuts and Shortest NonSeparating Cycles via Homology Covers
 SYMPOSIUM ON DISCRETE ALGORITHMS
, 2011
"... Let G be a directed graph with weighted edges, embedded on a surface of genus g with b boundaries. We describe an algorithm to compute the shortest directed cycle in G in any given � 2homology class in 2 O(g+b) n log n time; this problem is NPhard even for undirected graphs. We also present two ap ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
applications of our algorithm. The first is an algorithm to compute the shortest nonseparating directed cycle in G in 2 O(g) n log n time, improving the recent algorithm of Cabello et al. [SOCG 2010] for all g = o(log n). The second is a combinatorial algorithm to compute minimum (s, t)cuts in undirected
Computing nontrivial shortest cycles . . .
, 2006
"... We present an algorithm that computes a shortest noncontractible and a shortest nonseparating cycle on an orientable combinatorial surface of bounded genus in O(n log n) time, where n denotes the complexity of the surface. This solves a central open problem in computational topology, improving upon ..."
Abstract
 Add to MetaCart
We present an algorithm that computes a shortest noncontractible and a shortest nonseparating cycle on an orientable combinatorial surface of bounded genus in O(n log n) time, where n denotes the complexity of the surface. This solves a central open problem in computational topology, improving
Shortest nontrivial cycles in directed surface graphs
 In Proc. 27th Ann. Symp. Comput. Geom
, 2011
"... Let G be a directed graph embedded on a surface of genus g. We describe an algorithm to compute the shortest nonseparating cycle in G in O(g 2 n log n) time, exactly matching the fastest algorithm known for undirected graphs. We also describe an algorithm to compute the shortest noncontractible cy ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Let G be a directed graph embedded on a surface of genus g. We describe an algorithm to compute the shortest nonseparating cycle in G in O(g 2 n log n) time, exactly matching the fastest algorithm known for undirected graphs. We also describe an algorithm to compute the shortest non
Faster shortest noncontractible cycles in directed surface graphs
 CoRR
"... Let G be a directed graph embedded on a surface of genus g with b boundary cycles. We describe an algorithm to compute the shortest noncontractible cycle in G in O((g 3 + g b)n log n) time. Our algorithm improves the previous best known time bound of (g + b) O(g+b) n log n for all positive g and b. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
. We also describe an algorithm to compute the shortest nonnullhomologous cycle in G in O((g 2 + g b)n log n) time, generalizing a known algorithm to compute the shortest nonseparating cycle.
Shortest Nontrivial Cycles in Directed and Undirected Surface Graphs
"... Let G be a graph embedded on a surface of genus g with b boundary cycles. We describe algorithms to compute multiple types of nontrivial cycles in G, using different techniques depending on whether or not G is an undirected graph. If G is undirected, then we give an algorithm to compute a shortest ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
nonseparating cycle in G in 2O(g) n log log n time. Similar algorithms are given to compute a shortest noncontractible or nonnullhomologous cycle in 2O(g+b) n log log n time. Our algorithms for undirected G combine an algorithm of Kutz with known techniques for efficiently enumerating homotopy
Finding shortest nonseparating and noncontractible cycles for topologically embedded graphs
 In Proceedings 13th European Symp. Algorithms
, 2005
"... Abstract. We present an algorithm for finding shortest surface nonseparating cycles in graphs with given edgelengths that are embedded on surfaces. The time complexity is O(g 3/2 V 3/2 log V + g 5/2 V 1/2 ), where V is the number of vertices in the graph and g is the genus of the sur This result ..."
Abstract

Cited by 46 (9 self)
 Add to MetaCart
Abstract. We present an algorithm for finding shortest surface nonseparating cycles in graphs with given edgelengths that are embedded on surfaces. The time complexity is O(g 3/2 V 3/2 log V + g 5/2 V 1/2 ), where V is the number of vertices in the graph and g is the genus of the sur This result
OutputSensitive Algorithm for the EdgeWidth of an Embedded Graph
, 2010
"... Let G be an unweighted graph of complexity n cellularly embedded in a surface (orientable or not) of genus g. We describe improved algorithms to compute (the length of) a shortest noncontractible and a shortest nonseparating cycle of G. If k is an integer, we can compute such a nontrivial cycle w ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Let G be an unweighted graph of complexity n cellularly embedded in a surface (orientable or not) of genus g. We describe improved algorithms to compute (the length of) a shortest noncontractible and a shortest nonseparating cycle of G. If k is an integer, we can compute such a nontrivial cycle
The Determinants of Credit Spread Changes.
 Journal of Finance
, 2001
"... ABSTRACT Using dealer's quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are ..."
Abstract

Cited by 422 (2 self)
 Add to MetaCart
. Thus, we examine how changes in credit spreads respond to proxies for both changes in the probability of future default and for changes in the recovery rate. Separately, recent empirical studies find that the corporate bond market tends to have relatively high transactions costs and low volume. 1
A general approximation technique for constrained forest problems
 SIAM J. COMPUT.
, 1995
"... We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization proble ..."
Abstract

Cited by 414 (21 self)
 Add to MetaCart
We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization
Shortest Cocycle Bases of Graphs
"... Abstract In this paper we investigate the structure of the shortest cocycle base(or SCB in short) of connected graphs, which are related with map geometries, i.e., Smarandache 2dimensional manifolds. By using a Hall type theorem for base transformation, we show that the shortest cocycle bases hav ..."
Abstract
 Add to MetaCart
have the same structure (there is a 11 correspondence between two shortest cocycle bases such that the corresponding elements have the same length). As an application in surface topology, we show that in an embedded graph on a surface any nonseparating cycle can’t be generated by separating cycles
Results 1  10
of
552,928