• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 11 - 20 of 17,165
Next 10 →

A Key-Management Scheme for Distributed Sensor Networks

by Laurent Eschenauer, Virgil D. Gligor - In Proceedings of the 9th ACM Conference on Computer and Communications Security , 2002
"... Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with limited computation and communication capabilities. DSNs are dynamic in the sense that they allow addition and deletion of sensor nodes after deployment to grow the network or replace failing and unreliable ..."
Abstract - Cited by 901 (11 self) - Add to MetaCart
Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with limited computation and communication capabilities. DSNs are dynamic in the sense that they allow addition and deletion of sensor nodes after deployment to grow the network or replace failing and unreliable nodes. DSNs may be deployed in hostile areas where communication is monitored and nodes are subject to capture and surreptitious use by an adversary. Hence DSNs require cryptographic protection of communications, sensorcapture detection, key revocation and sensor disabling. In this paper, we present a key-management scheme designed to satisfy both operational and security requirements of DSNs.

Ad-hoc On-Demand Distance Vector Routing

by Charles E. Perkins, Elizabeth M. Royer - IN PROCEEDINGS OF THE 2ND IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS , 1997
"... An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. In this paper we present Ad-hoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad-hoc n ..."
Abstract - Cited by 3167 (15 self) - Add to MetaCart
An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. In this paper we present Ad-hoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad-hoc networks. Each Mobile Host operates as a specialized router, and routes are obtained as needed (i.e., on-demand) with little or no reliance on periodic advertisements. Our new routing algorithm is quite suitable for a dynamic selfstarting network, as required by users wishing to utilize ad-hoc networks. AODV provides loop-free routes even while repairing broken links. Because the protocol does not require global periodic routing advertisements, the demand on the overall bandwidth available to the mobile nodes is substantially less than in those protocols that do necessitate such advertisements. Nevertheless we can still maintain most of the advantages of basic distance-vector routing mechanisms. We show that our algorithm scales to large populations of mobile nodes wishing to form ad-hoc networks. We also include an evaluation methodology and simulation results to verify the operation of our algorithm.

Privacy Preserving Data Mining

by Yehuda Lindell, Benny Pinkas - JOURNAL OF CRYPTOLOGY , 2000
"... In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated b ..."
Abstract - Cited by 512 (8 self) - Add to MetaCart
In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated by the need to both protect privileged information and enable its use for research or other purposes. The

Modeling Strategic Relationships for Process Reengineering

by Eric Siu-kwong Yu , 1995
"... Existing models for describing a process (such as a business process or a software development process) tend to focus on the \what " or the \how " of the process. For example, a health insurance claim process would typically be described in terms of a number of steps for assessing and appr ..."
Abstract - Cited by 545 (40 self) - Add to MetaCart
Existing models for describing a process (such as a business process or a software development process) tend to focus on the \what " or the \how " of the process. For example, a health insurance claim process would typically be described in terms of a number of steps for assessing and approving a claim. In trying to improve orredesign a process, however, one also needs to have an understanding of the \why " { for example, why dophysicians submit treatment plans to insurance companies before giving treatment? and why do claims managers seek medical opinions when assessing treatment plans? An understanding of the motivations and interests of process participants is often crucial to the successful redesign of processes. This thesis proposes a modelling framework i (pronounced i-star) consisting of two modelling components. The Strategic Dependency (SD) model describes a process in terms of intentional dependency relationships among agents. Agents depend on each other for goals to be achieved, tasks to be performed, and resources to be furnished. Agents are intentional in that they have desires and wants, and strategic in that they are concerned about opportunities and vulnerabilities. The Strategic Rationale (SR) model describes the issues and concerns that agents

Biclustering of Expression Data

by Yizong Cheng, George M. Church , 2000
"... An efficient node-deletion algorithm is introduced to find submatrices... ..."
Abstract - Cited by 591 (0 self) - Add to MetaCart
An efficient node-deletion algorithm is introduced to find submatrices...

Mining Association Rules between Sets of Items in Large Databases

by Rakesh Agrawal, Tomasz Imielinski, Arun Swami - IN: PROCEEDINGS OF THE 1993 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, WASHINGTON DC (USA , 1993
"... We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel esti ..."
Abstract - Cited by 3260 (17 self) - Add to MetaCart
We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel estimation and pruning techniques. We also present results of applying this algorithm to sales data obtained from a large retailing company, which shows the effectiveness of the algorithm.

Mining the Network Value of Customers

by Pedro Domingos, Matt Richardson - In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining , 2002
"... One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected pro t from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only ..."
Abstract - Cited by 562 (11 self) - Add to MetaCart
One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected pro t from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only the intrinsic value of the customer (i.e, the expected pro t from sales to her). We propose to model also the customer's network value: the expected pro t from sales to other customers she may inuence to buy, the customers those may inuence, and so on recursively. Instead of viewing a market as a set of independent entities, we view it as a social network and model it as a Markov random eld. We show the advantages of this approach using a social network mined from a collaborative ltering database. Marketing that exploits the network value of customers|also known as viral marketing|can be extremely eective, but is still a black art. Our work can be viewed as a step towards providing a more solid foundation for it, taking advantage of the availability of large relevant databases. Categories and Subject Descriptors H.2.8 [Database Management]: Database Applications| data mining

Model-Based Clustering, Discriminant Analysis, and Density Estimation

by Chris Fraley, Adrian E. Raftery - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract - Cited by 557 (28 self) - Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little systematic guidance associated with these methods for solving important practical questions that arise in cluster analysis, such as \How many clusters are there?", "Which clustering method should be used?" and \How should outliers be handled?". We outline a general methodology for model-based clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster recovery from noisy data, and spatial density estimation. Finally, we mention limitations of the methodology, a...

Greedy Function Approximation: A Gradient Boosting Machine

by Jerome H. Friedman - Annals of Statistics , 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract - Cited by 951 (12 self) - Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such \TreeBoost" models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classication, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire 1996, and Frie...

Coherent Measures of Risk

by Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, David Heath , 1998
"... In this paper we study both market risks and non-market risks, without complete markets assumption, and discuss methods of measurement of these risks. We present and justify a set of four desirable properties for measures of risk, and call the measures satisfying these properties "coherent" ..."
Abstract - Cited by 882 (4 self) - Add to MetaCart
In this paper we study both market risks and non-market risks, without complete markets assumption, and discuss methods of measurement of these risks. We present and justify a set of four desirable properties for measures of risk, and call the measures satisfying these properties "coherent". We examine the measures of risk provided and the related actions required by SPAN, by the SEC/NASD rules and by quantile based methods. We demonstrate the universality of scenario-based methods for providing coherent measures. We offer suggestions concerning the SEC method. We also suggest a method to repair the failure of subadditivity of quantile-based methods.
Next 10 →
Results 11 - 20 of 17,165
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University