Results 1  10
of
5,820,520
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 776 (28 self)
 Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity
The Symbol Grounding Problem
, 1990
"... There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system be m ..."
Abstract

Cited by 1072 (18 self)
 Add to MetaCart
There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system
The Vocabulary Problem in HumanSystem Communication
 COMMUNICATIONS OF THE ACM
, 1987
"... In almost all computer applications, users must enter correct words for the desired objects or actions. For success without extensive training, or in firsttries for new targets, the system must recognize terms that will be chosen spontaneously. We studied spontaneous word choice for objects in five ..."
Abstract

Cited by 551 (8 self)
 Add to MetaCart
. For example, the popular approach in which access is via one designer's favorite single word will result in 8090 percent failure rates in many common situations. An optimal strategy, unlimited aliasing, is derived and shown to be capable of severalfold improvements.
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 741 (26 self)
 Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features
Some Evidence on the Importance of Sticky Prices
 JOURNAL OF POLITICAL ECONOMY
, 2004
"... We examine the frequency of price changes for 350 categories of goods and services covering about 70 % of consumer spending, based on unpublished data from the BLS for 1995 to 1997. Compared with previous studies we find much more frequent price changes, with half of goods' prices lasting less ..."
Abstract

Cited by 734 (15 self)
 Add to MetaCart
We examine the frequency of price changes for 350 categories of goods and services covering about 70 % of consumer spending, based on unpublished data from the BLS for 1995 to 1997. Compared with previous studies we find much more frequent price changes, with half of goods' prices lasting less than 4.3 months. Even excluding the role of temporary price cuts (sales), we find that half of goods' prices last 5.5 months or less. The frequency of price changes differs dramatically across categories. We exploit this variation to ask how inflation for "flexibleprice goods" (goods with frequent changes in individual prices) differs from inflation for "stickyprice goods" (those displaying infrequent price changes). Compared to the predictions of popular sticky price models, actual inflation rates are far more volatile and transient, particularly for stickyprice goods.
Cognitive load during problem solving: effects on learning
 COGNITIVE SCIENCE
, 1988
"... Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested t ..."
Abstract

Cited by 603 (13 self)
 Add to MetaCart
Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested
Learning and development in neural networks: The importance of starting small
 Cognition
, 1993
"... It is a striking fact that in humans the greatest learnmg occurs precisely at that point in time childhood when the most dramatic maturational changes also occur. This report describes possible synergistic interactions between maturational change and the ability to learn a complex domain (language ..."
Abstract

Cited by 518 (18 self)
 Add to MetaCart
(language), as investigated in connectionist networks. The networks are trained to process complex sentences involving relative clauses, number agreement, and several types of verb argument structure. Training fails in the case of networks which are fully formed and ‘adultlike ’ in their capacity. Training
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 734 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
Results 1  10
of
5,820,520