Results 1  10
of
1,502,742
RT Set size
"... If the eccentricity effect is due to: Spatial resolution underlies the set size effect in conjunction search ..."
Abstract
 Add to MetaCart
If the eccentricity effect is due to: Spatial resolution underlies the set size effect in conjunction search
The pyramid match kernel: Discriminative classification with sets of image features
 IN ICCV
, 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernelbased classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract

Cited by 544 (29 self)
 Add to MetaCart
for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multiresolution histograms and computes a weighted histogram intersection in this space. This “pyramid match” computation is linear
CURE: An Efficient Clustering Algorithm for Large Data sets
 Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract

Cited by 722 (5 self)
 Add to MetaCart
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new
Lag length selection and the construction of unit root tests with good size and power
 Econometrica
, 2001
"... It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We conside ..."
Abstract

Cited by 558 (14 self)
 Add to MetaCart
(1996). We also extend the M tests developed in Perron and Ng (1996) to allow for GLS detrending of the data. The MIC along with GLS detrended data yield a set of tests with desirable size and power properties.
Inductive learning algorithms and representations for text categorization,”
 in Proceedings of the International Conference on Information and Knowledge Management,
, 1998
"... ABSTRACT Text categorization the assignment of natural language texts to one or more predefined categories based on their content is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text ..."
Abstract

Cited by 652 (8 self)
 Add to MetaCart
categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs
On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes
, 2001
"... We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size is i ..."
Abstract

Cited by 520 (8 self)
 Add to MetaCart
We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size
The SPLASH2 programs: Characterization and methodological considerations
 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE
, 1995
"... The SPLASH2 suite of parallel applications has recently been released to facilitate the study of centralized and distributed sharedaddressspace multiprocessors. In this context, this paper has two goals. One is to quantitatively characterize the SPLASH2 programs in terms of fundamental propertie ..."
Abstract

Cited by 1420 (12 self)
 Add to MetaCart
properties and architectural interactions that are important to understand them well. The properties we study include the computational load balance, communication to computation ratio and traffic needs, important working set sizes, and issues related to spatial locality, as well as how these properties
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 542 (20 self)
 Add to MetaCart
runtime of our method is Õ(d/(λɛ)), where d is a bound on the number of nonzero features in each example. Since the runtime does not depend directly on the size of the training set, the resulting algorithm is especially suited for learning from large datasets. Our approach also extends to non
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 818 (27 self)
 Add to MetaCart
for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain. This article’s results also imply that detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also verified empirically.
Sequential minimal optimization: A fast algorithm for training support vector machines
 Advances in Kernel MethodsSupport Vector Learning
, 1999
"... This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possi ..."
Abstract

Cited by 461 (3 self)
 Add to MetaCart
possible QP problems. These small QP problems are solved analytically, which avoids using a timeconsuming numerical QP optimization as an inner loop. The amount of memory required for SMO is linear in the training set size, which allows SMO to handle very large training sets. Because matrix computation
Results 1  10
of
1,502,742