Results 1  10
of
1,303,252
An additively separable representation in the
, 2007
"... This paper elicits an additively separable representation of preferences in the Savage framework (where the objects of choice are acts: measurable functions from an infinite set of states to a potentially finite set of consequences). A preference relation over acts is represented by the integral ove ..."
Abstract
 Add to MetaCart
This paper elicits an additively separable representation of preferences in the Savage framework (where the objects of choice are acts: measurable functions from an infinite set of states to a potentially finite set of consequences). A preference relation over acts is represented by the integral
N Degrees of Separation: MultiDimensional Separation of Concerns
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 1999
"... Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a ..."
Abstract

Cited by 514 (8 self)
 Add to MetaCart
Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a
Estimation of Separable Representations in Psychophysical Experiments
"... Studying how individuals compare two given quantitative stimuli, say d1 and d2, is a fundamental problem. One very common way to address it is through ratio magnitude estimation, that is to ask individuals not to give values to d1 and d2 but rather to give their estimates of the ratio p = d1/d2. S ..."
Abstract
 Add to MetaCart
. Several psychophysical theories (the most known being Stevens ’ powerlaw) claim that this ratio cannot be known directly and that there are cognitive distortions on the apprehension of the different quantities. These theories result in the socalled separable representations (which include Stevens
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a MixtureofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection, recognition, and coding of human faces and nonrigid objects such as hands.
Advances in Prospect Theory: Cumulative Representation of Uncertainty
 JOURNAL OF RISK AND UNCERTAINTY, 5:297323 (1992)
, 1992
"... We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows differ ..."
Abstract

Cited by 1603 (12 self)
 Add to MetaCart
We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows
The Contourlet Transform: An Efficient Directional Multiresolution Image Representation
 IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract

Cited by 510 (20 self)
 Add to MetaCart
The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 614 (80 self)
 Add to MetaCart
A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number
Inductive Learning Algorithms and Representations for Text Categorization
, 1998
"... Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categori ..."
Abstract

Cited by 641 (8 self)
 Add to MetaCart
categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs
LexicalFunctional Grammar: A Formal System for Grammatical Representation
 IN: FORMAL ISSUES IN LEXICALFUNCTIONAL GRAMMAR
, 1995
"... In learning their native language, children develop a remarkable set of capabilities. They acquire knowledge and skills that enable them to produce and comprehend an indefinite number of novel utterances, and to make quite subtle judgments about certain of their properties. The major goal of psychol ..."
Abstract

Cited by 611 (23 self)
 Add to MetaCart
will incorporate a theoretically justi ed representation of the native speaker's linguistic knowledge (a grammar) as a component separate both from the computational mechanisms that operate on it (a processor) and from other nongrammatical processing parameters that might influence the processor
Results 1  10
of
1,303,252