Results 1  10
of
54,725
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH ..."
Abstract

Cited by 601 (26 self)
 Add to MetaCart
ARCH (GARCH) models [see Bollerslev, Chou, and Kroner (1992) for a survey of ARCH modeling], both the mean and logvolatility equations have separate error terms. The ease of evaluating the ARCH likelihood function and the ability of the ARCH specification to accommodate the timevarying volatility
Near Shannon limit errorcorrecting coding and decoding
, 1993
"... Abstract This paper deals with a new class of convolutional codes called Turbocodes, whose performances in terms of Bit Error Rate (BER) are close to the SHANNON limit. The TurboCode encoder is built using a parallel concatenation of two Recursive Systematic Convolutional codes and the associated ..."
Abstract

Cited by 1776 (6 self)
 Add to MetaCart
Abstract This paper deals with a new class of convolutional codes called Turbocodes, whose performances in terms of Bit Error Rate (BER) are close to the SHANNON limit. The TurboCode encoder is built using a parallel concatenation of two Recursive Systematic Convolutional codes
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 750 (23 self)
 Add to MetaCart
We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties
ModelBased Analysis of Oligonucleotide Arrays: Model Validation, Design Issues and Standard Error Application
, 2001
"... Background: A modelbased analysis of oligonucleotide expression arrays we developed previously uses a probesensitivity index to capture the response characteristic of a specific probe pair and calculates modelbased expression indexes (MBEI). MBEI has standard error attached to it as a measure of ..."
Abstract

Cited by 775 (28 self)
 Add to MetaCart
Background: A modelbased analysis of oligonucleotide expression arrays we developed previously uses a probesensitivity index to capture the response characteristic of a specific probe pair and calculates modelbased expression indexes (MBEI). MBEI has standard error attached to it as a measure
SupportVector Networks
 Machine Learning
, 1995
"... The supportvector network is a new learning machine for twogroup classification problems. The machine conceptually implements the following idea: input vectors are nonlinearly mapped to a very highdimension feature space. In this feature space a linear decision surface is constructed. Special pr ..."
Abstract

Cited by 3703 (35 self)
 Add to MetaCart
properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the supportvector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to nonseparable training data.
Divergence measures based on the Shannon entropy
 IEEE Transactions on Information theory
, 1991
"... AbstractA new class of informationtheoretic divergence measures based on the Shannon entropy is introduced. Unlike the wellknown Kullback divergences, the new measures do not require the condition of absolute continuity to be satisfied by the probability distributions involved. More importantly, ..."
Abstract

Cited by 666 (0 self)
 Add to MetaCart
, their close relationship with the variational distance and the probability of misclassification error are established in terms of bounds. These bounds are crucial in many applications of divergence measures. The new measures are also well characterized by the properties of nonnegativity, finiteness
Long Shortterm Memory
, 1995
"... "Recurrent backprop" for learning to store information over extended time intervals takes too long. The main reason is insufficient, decaying error back flow. We briefly review Hochreiter's 1991 analysis of this problem. Then we overcome it by introducing a novel, efficient method c ..."
Abstract

Cited by 454 (58 self)
 Add to MetaCart
called "Long Short Term Memory" (LSTM). LSTM can learn to bridge minimal time lags in excess of 1000 time steps by enforcing constant error flow through internal states of special units. Multiplicative gate units learn to open and close access to constant error flow. LSTM's update
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract

Cited by 5614 (118 self)
 Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract

Cited by 539 (17 self)
 Add to MetaCart
Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a
Distance metric learning for large margin nearest neighbor classification
 In NIPS
, 2006
"... We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven ..."
Abstract

Cited by 695 (14 self)
 Add to MetaCart
We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin
Results 1  10
of
54,725