• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 7,606
Next 10 →

Maximum entropy markov models for information extraction and segmentation

by Andrew McCallum, Dayne Freitag, Fernando Pereira , 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many text-related tasks, such as part-of-speech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract - Cited by 561 (18 self) - Add to MetaCart
Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many text-related tasks, such as part-of-speech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled

Conditional random fields: Probabilistic models for segmenting and labeling sequence data

by John Lafferty , 2001
"... We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions ..."
Abstract - Cited by 3485 (85 self) - Add to MetaCart
We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions

TextTiling: Segmenting text into multi-paragraph subtopic passages

by Marti A. Hearst - Computational Linguistics , 1997
"... TextTiling is a technique for subdividing texts into multi-paragraph units that represent passages, or subtopics. The discourse cues for identifying major subtopic shifts are patterns of lexical co-occurrence and distribution. The algorithm is fully implemented and is shown to produce segmentation t ..."
Abstract - Cited by 458 (2 self) - Add to MetaCart
that corresponds well to human judgments of the subtopic boundaries of 12 texts. Multi-paragraph subtopic segmentation should be useful for many text analysis tasks, including information retrieval and summarization. 1.

Mean shift: A robust approach toward feature space analysis

by Dorin Comaniciu, Peter Meer - In PAMI , 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract - Cited by 2395 (37 self) - Add to MetaCart
-estimators of location is also established. Algorithms for two low-level vision tasks, discontinuity preserving smoothing and image segmentation are described as applications. In these algorithms the only user set parameter is the resolution of the analysis, and either gray level or color images are accepted as input

ATTENTION, INTENTIONS, AND THE STRUCTURE OF DISCOURSE

by Barbara J. Grosz, Candace L. Sidner , 1986
"... In this paper we explore a new theory of discourse structure that stresses the role of purpose and processing in discourse. In this theory, discourse structure is composed of three separate but interre-lated components: the structure of the sequence of utterances (called the linguistic structure), a ..."
Abstract - Cited by 1259 (49 self) - Add to MetaCart
), a struc-ture of purposes (called the intentional structure), and the state of focus of attention (called the attentional state). The linguistic structure consists of segments of the discourse into which the utter-ances naturally aggregate. The intentional structure captures the discourse

Deformable models in medical image analysis: A survey

by Tim Mcinerney, Demetri Terzopoulos - Medical Image Analysis , 1996
"... This article surveys deformable models, a promising and vigorously researched computer-assisted medical image analysis technique. Among model-based techniques, deformable models offer a unique and powerful approach to image analysis that combines geometry, physics, and approximation theory. They hav ..."
Abstract - Cited by 591 (7 self) - Add to MetaCart
. They have proven to be effective in segmenting, matching, and tracking anatomic structures by exploiting (bottom-up) constraints derived from the image data together with (top-down) a priori knowledge about the location, size, and shape of these structures. Deformable models are capable of accommodating

Gradient-based learning applied to document recognition

by Yann Lecun, Léon Bottou, Yoshua Bengio, Patrick Haffner - Proceedings of the IEEE , 1998
"... Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify hi ..."
Abstract - Cited by 1533 (84 self) - Add to MetaCart
high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed

Contour Detection and Hierarchical Image Segmentation

by Pablo Arbeláez, Michael Maire, Charless Fowlkes, Jitendra Malik - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2010
"... This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentati ..."
Abstract - Cited by 389 (24 self) - Add to MetaCart
This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our

The Ising/Potts model is not well suited to segmentation tasks

by R. D. Morris, X. Descombes, J. Zerubia - In Proceedings of the IEEE Digital Signal Processing Workshop , 1996
"... The Ising and Potts models have been used since the earliest work on MRF based image segmentation as the underlying model for the region labels, and continue to be used for this task. Recently, however, advances in Markov chain Monte Carlo techniques have highlighted the shortcomings of these models ..."
Abstract - Cited by 8 (1 self) - Add to MetaCart
The Ising and Potts models have been used since the earliest work on MRF based image segmentation as the underlying model for the region labels, and continue to be used for this task. Recently, however, advances in Markov chain Monte Carlo techniques have highlighted the shortcomings

Segmentation using eigenvectors: A unifying view

by Yair Weiss - In ICCV , 1999
"... Automatic grouping and segmentation of images remains a challenging problem in computer vision. Recently, a number of authors have demonstrated good performance on this task using methods that are based on eigenvectors of the a nity matrix. These approaches are extremely attractive in that they are ..."
Abstract - Cited by 380 (1 self) - Add to MetaCart
Automatic grouping and segmentation of images remains a challenging problem in computer vision. Recently, a number of authors have demonstrated good performance on this task using methods that are based on eigenvectors of the a nity matrix. These approaches are extremely attractive
Next 10 →
Results 1 - 10 of 7,606
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University