Results 1  10
of
15,785
Global Optimization with Polynomials and the Problem of Moments
 SIAM JOURNAL ON OPTIMIZATION
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear ma ..."
Abstract

Cited by 577 (48 self)
 Add to MetaCart
matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided.
An affine invariant interest point detector
 In Proceedings of the 7th European Conference on Computer Vision
, 2002
"... Abstract. This paper presents a novel approach for detecting affine invariant interest points. Our method can deal with significant affine transformations including large scale changes. Such transformations introduce significant changes in the point location as well as in the scale and the shape of ..."
Abstract

Cited by 1467 (55 self)
 Add to MetaCart
of the neighbourhood of an interest point. Our approach allows to solve for these problems simultaneously. It is based on three key ideas: 1) The second moment matrix computed in a point can be used to normalize a region in an affine invariant way (skew and stretch). 2) The scale of the local structure is indicated
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 555 (22 self)
 Add to MetaCart
remarkable features making this attractive for lowrank matrix completion problems. The first is that the softthresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1713 (13 self)
 Add to MetaCart
in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze
Stable signal recovery from incomplete and inaccurate measurements,”
 Comm. Pure Appl. Math.,
, 2006
"... Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y? To r ..."
Abstract

Cited by 1397 (38 self)
 Add to MetaCart
, suppose that A is a Gaussian random matrix; then stable recovery occurs for almost all such A's provided that the number of nonzeros of x 0 is of about the same order as the number of observations. As a second instance, suppose one observes few Fourier samples of x 0 ; then stable recovery occurs
Randomized Gossip Algorithms
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract

Cited by 532 (5 self)
 Add to MetaCart
distribute the computational burden and in which a node communicates with a randomly chosen neighbor. We analyze the averaging problem under the gossip constraint for an arbitrary network graph, and find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly
What is a hidden Markov model?
, 2004
"... Often, problems in biological sequence analysis are just a matter of putting the right label on each residue. In gene identification, we want to label nucleotides as exons, introns, or intergenic sequence. In sequence alignment, we want to associate residues in a query sequence with homologous resi ..."
Abstract

Cited by 1344 (8 self)
 Add to MetaCart
splice site consenses, codon bias, exon/intron length preferences, and open reading frame analysis all in one scoring system. How should all those parameters be set? How should different kinds of information be weighted? A second issue is being able to interpret results probabilistically. Finding a best
Similarity of Color Images
, 1995
"... We describe two new color indexing techniques. The first one is a more robust version of the commonly used color histogram indexing. In the index we store the cumulative color histograms. The L 1 , L 2 , or L1 distance between two cumulative color histograms can be used to define a similarity mea ..."
Abstract

Cited by 495 (2 self)
 Add to MetaCart
measure of these two color distributions. We show that while this method produces only slightly better results than color histogram methods, it is more robust with respect to the quantization parameter of the histograms. The second technique is an example of a new approach to color indexing. Instead
Testing for Common Trends
 Journal of the American Statistical Association
, 1988
"... Cointegrated multiple time series share at least one common trend. Two tests are developed for the number of common stochastic trends (i.e., for the order of cointegration) in a multiple time series with and without drift. Both tests involve the roots of the ordinary least squares coefficient matrix ..."
Abstract

Cited by 464 (7 self)
 Add to MetaCart
matrix obtained by regressing the series onto its first lag. Critical values for the tests are tabulated, and their power is examined in a Monte Carlo study. Economic time series are often modeled as having a unit root in their autoregressive representation, or (equivalently) as containing a stochastic
The Determinants of Credit Spread Changes.
 Journal of Finance
, 2001
"... ABSTRACT Using dealer's quotes and transactions prices on straight industrial bonds, we investigate the determinants of credit spread changes. Variables that should in theory determine credit spread changes have rather limited explanatory power. Further, the residuals from this regression are ..."
Abstract

Cited by 422 (2 self)
 Add to MetaCart
credit spread changes. Second, we consider a host of new explanatory variables that proxy for changes in liquidity and other macroeconomic effects. Finally, we perform a regression analysis on simulated data to demonstrate that our empirical findings are not being driven by the econometric techniques
Results 1  10
of
15,785