• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 87,021
Next 10 →

The Nature of Statistical Learning Theory

by Vladimir N. Vapnik , 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract - Cited by 13236 (32 self) - Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based

Rigorous statistical analysis of Internet loss measurements

by Matthew Roughan - In University of Adelaide Technical Report, http://adelaide.edu.au/directory/hung.nguyen , 2010
"... In this paper we present a rigorous technique for estimating confidence intervals of packet loss measurements. Our approach is motivated by simple observations that the loss process can be modelled as an alternating renewal process. We use this structure to build a Hidden Semi-Markov Model (HSMM) fo ..."
Abstract - Cited by 5 (0 self) - Add to MetaCart
In this paper we present a rigorous technique for estimating confidence intervals of packet loss measurements. Our approach is motivated by simple observations that the loss process can be modelled as an alternating renewal process. We use this structure to build a Hidden Semi-Markov Model (HSMM

On the Self-similar Nature of Ethernet Traffic (Extended Version)

by Will E. Leland, Murad S. Taqqu, Walter Willinger, Daniel V. Wilson , 1994
"... We demonstrate that Ethernet LAN traffic is statistically self-similar, that none of the commonly used traffic models is able to capture this fractal-like behavior, that such behavior has serious implications for the design, control, and analysis of high-speed, cell-based networks, and that aggrega ..."
Abstract - Cited by 2213 (46 self) - Add to MetaCart
, and that aggregating streams of such traffic typically intensifies the self-similarity (“burstiness”) instead of smoothing it. Our conclusions are supported by a rigorous statistical analysis of hundreds of millions of high quality Ethernet traffic measurements collected between 1989 and 1992, coupled with a

Directional Statistics and Shape Analysis

by K. V. Mardia , 1995
"... There have been various developments in shape analysis in the last decade. We describe here some relationships of shape analysis with directional statistics. For shape, rotations are to be integrated out or to be optimized over whilst they are the basis for directional statistics. However, various c ..."
Abstract - Cited by 794 (33 self) - Add to MetaCart
There have been various developments in shape analysis in the last decade. We describe here some relationships of shape analysis with directional statistics. For shape, rotations are to be integrated out or to be optimized over whilst they are the basis for directional statistics. However, various

Statistical Analysis of Cointegrated Vectors

by Soren Johansen - Journal of Economic Dynamics and Control , 1988
"... We consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors. We then derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number of dimen ..."
Abstract - Cited by 2749 (12 self) - Add to MetaCart
of dimensions. Further we test linear hypotheses about the cointegration vectors. The asymptotic distribution of these test statistics are found and the first is described by a natural multivariate version of the usual test for unit root in an autoregressive process, and the other is a x2 test. 1.

On the statistical analysis of dirty pictures

by Julian Besag - JOURNAL OF THE ROYAL STATISTICAL SOCIETY B , 1986
"... ..."
Abstract - Cited by 1248 (5 self) - Add to MetaCart
Abstract not found

Statistical Analysis with Missing Data

by Roderick J. Little, Nanhua Zhang , 2002
"... Subsample ignorable likelihood for regression ..."
Abstract - Cited by 2769 (21 self) - Add to MetaCart
Subsample ignorable likelihood for regression

Blind Signal Separation: Statistical Principles

by Jean-Francois Cardoso , 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract - Cited by 529 (4 self) - Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption

Accurate Methods for the Statistics of Surprise and Coincidence

by Ted Dunning - COMPUTATIONAL LINGUISTICS , 1993
"... Much work has been done on the statistical analysis of text. In some cases reported in the literature, inappropriate statistical methods have been used, and statistical significance of results have not been addressed. In particular, asymptotic normality assumptions have often been used unjustifiably ..."
Abstract - Cited by 1057 (1 self) - Add to MetaCart
Much work has been done on the statistical analysis of text. In some cases reported in the literature, inappropriate statistical methods have been used, and statistical significance of results have not been addressed. In particular, asymptotic normality assumptions have often been used

Statistical pattern recognition: A review

by Anil K. Jain, Robert P. W. Duin, Jianchang Mao - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2000
"... The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques ..."
Abstract - Cited by 1035 (30 self) - Add to MetaCart
The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network
Next 10 →
Results 1 - 10 of 87,021
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University