Results 1  10
of
3,000,017
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection
Intrinsic and extrinsic motivations: Classic definitions and new directions
 Contemporary Educational Psychology
, 2000
"... Intrinsic and extrinsic types of motivation have been widely studied, and the distinction between them has shed important light on both developmental and educational practices. In this review we revisit the classic definitions of intrinsic and extrinsic motivation in light of contemporary research a ..."
Abstract

Cited by 561 (8 self)
 Add to MetaCart
Intrinsic and extrinsic types of motivation have been widely studied, and the distinction between them has shed important light on both developmental and educational practices. In this review we revisit the classic definitions of intrinsic and extrinsic motivation in light of contemporary research
Mining Generalized Association Rules
, 1995
"... We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (isa hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy th ..."
Abstract

Cited by 577 (7 self)
 Add to MetaCart
We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (isa hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings
Mining Sequential Patterns: Generalizations and Performance Improvements
 Research Report RJ 9994, IBM Almaden Research
, 1995
"... Abstract. The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a user ..."
Abstract

Cited by 748 (5 self)
 Add to MetaCart
". We generalize the problem as follows. First, we add time constraints that specify a minimum and/or maximum time period between adjacent elements in a pattern. Second, we relax the restriction that the items in an element of a sequential pattern must come from the same transaction, instead allowing
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 610 (15 self)
 Add to MetaCart
The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a satisfactory solution to the problem. Illustrative results of how the DM can interact with the genetic algorithm are presented. They also show the ability of the MOGA to uniformly sample regions of the tradeoff surface.
Beyond Market Baskets: Generalizing Association Rules To Dependence Rules
, 1998
"... One of the more wellstudied problems in data mining is the search for association rules in market basket data. Association rules are intended to identify patterns of the type: “A customer purchasing item A often also purchases item B. Motivated partly by the goal of generalizing beyond market bask ..."
Abstract

Cited by 623 (6 self)
 Add to MetaCart
One of the more wellstudied problems in data mining is the search for association rules in market basket data. Association rules are intended to identify patterns of the type: “A customer purchasing item A often also purchases item B. Motivated partly by the goal of generalizing beyond market
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
as a generalization of Paige and Saunders’ MINRES algorithm and is theoretically equivalent to the Generalized Conjugate Residual (GCR) method and to ORTHODIR. The new algorithm presents several advantages over GCR and ORTHODIR.
Results 1  10
of
3,000,017