Results 1 - 10
of
89,167
Shape and motion from image streams under orthography: a factorization method
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1992
"... Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orth ..."
Abstract
-
Cited by 1094 (38 self)
- Add to MetaCart
Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under
Boosting the margin: A new explanation for the effectiveness of voting methods
- IN PROCEEDINGS INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1997
"... One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this ..."
Abstract
-
Cited by 897 (52 self)
- Add to MetaCart
that this phenomenon is related to the distribution of margins of the training examples with respect to the generated voting classification rule, where the margin of an example is simply the difference between the number of correct votes and the maximum number of votes received by any incorrect label. We show
Learning with local and global consistency.
- In NIPS,
, 2003
"... Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intr ..."
Abstract
-
Cited by 673 (21 self)
- Add to MetaCart
Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect
Multimodality Image Registration by Maximization of Mutual Information
- IEEE TRANSACTIONS ON MEDICAL IMAGING
, 1997
"... A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or in ..."
Abstract
-
Cited by 791 (10 self)
- Add to MetaCart
A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence
Comparing Images Using the Hausdorff Distance
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1993
"... The Hausdorff distance measures the extent to which each point of a `model' set lies near some point of an `image' set and vice versa. Thus this distance can be used to determine the degree of resemblance between two objects that are superimposed on one another. In this paper we provide ef ..."
Abstract
-
Cited by 659 (10 self)
- Add to MetaCart
efficient algorithms for computing the Hausdorff distance between all possible relative positions of a binary image and a model. We focus primarily on the case in which the model is only allowed to translate with respect to the image. Then we consider how to extend the techniques to rigid motion
SURF: Speeded Up Robust Features
- ECCV
"... Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be comp ..."
Abstract
-
Cited by 897 (12 self)
- Add to MetaCart
Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can
"GrabCut” -- interactive foreground extraction using iterated graph cuts
- ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract
-
Cited by 1130 (36 self)
- Add to MetaCart
. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the graph-cut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
- Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract
-
Cited by 1345 (23 self)
- Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
Distributional Clustering Of English Words
- In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics
, 1993
"... We describe and evaluate experimentally a method for clustering words according to their dis- tribution in particular syntactic contexts. Words are represented by the relative frequency distributions of contexts in which they appear, and relative entropy between those distributions is used as the si ..."
Abstract
-
Cited by 629 (27 self)
- Add to MetaCart
We describe and evaluate experimentally a method for clustering words according to their dis- tribution in particular syntactic contexts. Words are represented by the relative frequency distributions of contexts in which they appear, and relative entropy between those distributions is used
Closed-form solution of absolute orientation using unit quaternions
- J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closed-form solution to the least-squares pr ..."
Abstract
-
Cited by 989 (4 self)
- Add to MetaCart
-squares problem for three or more points. Currently various empirical, graphical, and numerical iterative methods are in use. Derivation of the solution is simplified by use of unit quaternions to represent rotation. I emphasize a symmetry property that a solution to this problem ought to possess. The best
Results 1 - 10
of
89,167