Results 1  10
of
1,438,909
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a MixtureofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection, recognition, and coding of human faces and nonrigid objects such as hands.
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
 Neural Computation
, 2003
"... Abstract One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low dimensional manifold embedded in a high dimensional space. Drawing on the corr ..."
Abstract

Cited by 1205 (16 self)
 Add to MetaCart
Abstract One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low dimensional manifold embedded in a high dimensional space. Drawing
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 758 (3 self)
 Add to MetaCart
) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy
Representational Complexity of Reactive Agents
"... Abstract — Reactive agents are an important part of video games and numerous tools have emerged to facilitate the rapid construction of such agents. While the ability of the commonly used reactive techniques to express agent specifications is roughly equivalent, the authorial burden of constructing ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
these specifications varies. In practice, this means that identical agent behavior may be more difficult to create in some architectures than others. In this paper we introduce the notion of representational complexity that relates to the authorial burden of constructing such agents and theoretically compare
Inductive Learning Algorithms and Representations for Text Categorization
, 1998
"... Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categori ..."
Abstract

Cited by 641 (8 self)
 Add to MetaCart
categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
The knowledge complexity of interactive proof systems
 in Proc. 27th Annual Symposium on Foundations of Computer Science
, 1985
"... Abstract. Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it; however, this seems to contain more knowledge than the single bit Hamiltonian/nonHamiltoni ..."
Abstract

Cited by 1267 (42 self)
 Add to MetaCart
/nonHamiltonian. In this paper a computational complexity theory of the "knowledge " contained in a proof is developed. Zeroknowledge proofs are defined as those proofs that convey no additional knowledge other than the correctness of the proposition in question. Examples of zeroknowledge proof systems are given
PCASIFT: A more distinctive representation for local image descriptors
, 2004
"... Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deforma ..."
Abstract

Cited by 572 (6 self)
 Add to MetaCart
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image
Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
 ACOUSTICS, SPEECH AND SIGNAL PROCESSING, IEEE TRANSACTIONS ON
, 1980
"... Several parametric representations of the acoustic signal were compared as to word recognition performance in a syllableoriented continuous speech recognition system. The vocabulary included many phonetically similar monosyllabic words, therefore the emphasis was on ability to retain phonetically ..."
Abstract

Cited by 1089 (2 self)
 Add to MetaCart
Several parametric representations of the acoustic signal were compared as to word recognition performance in a syllableoriented continuous speech recognition system. The vocabulary included many phonetically similar monosyllabic words, therefore the emphasis was on ability to retain
Results 1  10
of
1,438,909