Results 1  10
of
1,467,116
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 721 (8 self)
 Add to MetaCart
thatlike the other methodsthe errorcorrecting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that errorcorrecting output codes provide a generalpurpose method for improving the performance of inductive learning programs on multiclass
Unscented Filtering and Nonlinear Estimation
 PROCEEDINGS OF THE IEEE
, 2004
"... The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the ..."
Abstract

Cited by 558 (5 self)
 Add to MetaCart
The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 860 (14 self)
 Add to MetaCart
≪ p, and the zi’s are i.i.d. N(0, σ 2). Is it possible to estimate x reliably based on the noisy data y? To estimate x, we introduce a new estimator—we call the Dantzig selector—which is solution to the ℓ1regularization problem min ˜x∈R p ‖˜x‖ℓ1 subject to ‖A T r‖ℓ ∞ ≤ (1 + t −1) √ 2 log p · σ
Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods
 J. Mol. Evol
, 1994
"... Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called ..."
Abstract

Cited by 539 (28 self)
 Add to MetaCart
Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called
Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope
 International Journal of Computer Vision
, 2001
"... In this paper, we propose a computational model of the recognition of real world scenes that bypasses the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimensional representation of the scene, that we term the Spatial Envelope. We propose a se ..."
Abstract

Cited by 1284 (80 self)
 Add to MetaCart
set of perceptual dimensions (naturalness, openness, roughness, expansion, ruggedness) that represent the dominant spatial structure of a scene. Then, we show that these dimensions may be reliably estimated using spectral and coarsely localized information. The model generates a multidimensional space
DeNoising By SoftThresholding
, 1992
"... Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an a ..."
Abstract

Cited by 1248 (14 self)
 Add to MetaCart
by an amount p 2 log(n) = p n. We prove two results about that estimator. [Smooth]: With high probability ^ fn is at least as smooth as f, in any of a wide variety of smoothness measures. [Adapt]: The estimator comes nearly as close in mean square to f as any measurable estimator can come, uniformly over
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 805 (26 self)
 Add to MetaCart
containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zero
Probability Estimates for Multiclass Classification by Pairwise Coupling
 Journal of Machine Learning Research
, 2003
"... Pairwise coupling is a popular multiclass classification method that combines together all pairwise comparisons for each pair of classes. This paper presents two approaches for obtaining class probabilities. Both methods can be reduced to linear systems and are easy to implement. ..."
Abstract

Cited by 295 (1 self)
 Add to MetaCart
Pairwise coupling is a popular multiclass classification method that combines together all pairwise comparisons for each pair of classes. This paper presents two approaches for obtaining class probabilities. Both methods can be reduced to linear systems and are easy to implement.
Classification by pairwise coupling
, 1998
"... We discuss a strategy for polychotomous classification that involves estimating class probabilities for each pair of classes, and then coupling the estimates together. The coupling model is similar to the BradleyTerry method for paired comparisons. We study the nature of the class probability estim ..."
Abstract

Cited by 371 (0 self)
 Add to MetaCart
We discuss a strategy for polychotomous classification that involves estimating class probabilities for each pair of classes, and then coupling the estimates together. The coupling model is similar to the BradleyTerry method for paired comparisons. We study the nature of the class probability
Markov Localization for Mobile Robots in Dynamic Environments
 Journal of Artificial Intelligence Research
, 1999
"... Localization, that is the estimation of a robot's location from sensor data, is a fundamental problem in mobile robotics. This papers presents a version of Markov localization which provides accurate position estimates and which is tailored towards dynamic environments. The key idea of Marko ..."
Abstract

Cited by 356 (45 self)
 Add to MetaCart
localization failures. It is robust to approximate models of the environment (such as occupancy grid maps) and noisy sensors (such as ultrasound sensors). Our approach also includes a ltering technique which allows a mobile robot to reliably estimate its position even in densely populated environments
Results 1  10
of
1,467,116