Results 1  10
of
1,105,396
Error and attack tolerance of complex networks
, 2000
"... Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network [1]. C ..."
Abstract

Cited by 1013 (7 self)
 Add to MetaCart
Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network [1
Minimum Error Rate Training in Statistical Machine Translation
, 2003
"... Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training cri ..."
Abstract

Cited by 757 (7 self)
 Add to MetaCart
Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training
The neural basis of human error processing: Reinforcement learning, dopamine, and the errorrelated negativity
 PSYCHOLOGICAL REVIEW 109:679–709
, 2002
"... The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a “generic ” errorprocessing system associated with the anterior cingulate cortex. The existence of the error ..."
Abstract

Cited by 430 (20 self)
 Add to MetaCart
of the errorprocessing system has been inferred from the errorrelated negativity (ERN), a component of the eventrelated brain potential elicited when human participants commit errors in reactiontime tasks. The authors propose that the ERN is generated when a negative reinforcement learning signal
Boosting the margin: A new explanation for the effectiveness of voting methods
 IN PROCEEDINGS INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1997
"... One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this ..."
Abstract

Cited by 897 (52 self)
 Add to MetaCart
that techniques used in the analysis of Vapnik’s support vector classifiers and of neural networks with small weights can be applied to voting methods to relate the margin distribution to the test error. We also show theoretically and experimentally that boosting is especially effective at increasing the margins
Quantal Response Equilibria For Normal Form Games
 NORMAL FORM GAMES, GAMES AND ECONOMIC BEHAVIOR
, 1995
"... We investigate the use of standard statistical models for quantal choice in a game theoretic setting. Players choose strategies based on relative expected utility, and assume other players do so as well. We define a Quantal Response Equilibrium (QRE) as a fixed point of this process, and establish e ..."
Abstract

Cited by 647 (28 self)
 Add to MetaCart
We investigate the use of standard statistical models for quantal choice in a game theoretic setting. Players choose strategies based on relative expected utility, and assume other players do so as well. We define a Quantal Response Equilibrium (QRE) as a fixed point of this process, and establish
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract

Cited by 5614 (118 self)
 Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection
Scalar Quantization for Relative Error
 DATA COMPRESSION CONFERENCE
, 2011
"... Quantizers for probabilistic sources are usually optimized for meansquared error. In many applications, maintaining low relative error is a more suitable objective. This measure has previously been heuristically connected with the use of logarithmic companding in perceptual coding. We derive optima ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
Quantizers for probabilistic sources are usually optimized for meansquared error. In many applications, maintaining low relative error is a more suitable objective. This measure has previously been heuristically connected with the use of logarithmic companding in perceptual coding. We derive
Globally Consistent Range Scan Alignment for Environment Mapping
 AUTONOMOUS ROBOTS
, 1997
"... A robot exploring an unknown environmentmay need to build a world model from sensor measurements. In order to integrate all the frames of sensor data, it is essential to align the data properly. An incremental approach has been typically used in the past, in which each local frame of data is alig ..."
Abstract

Cited by 531 (8 self)
 Add to MetaCart
is aligned to a cumulative global model, and then merged to the model. Because different parts of the model are updated independently while there are errors in the registration, such an approachmay result in an inconsistent model. In this paper, we study the problem of consistent registration of multiple
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary
Basic concepts and taxonomy of dependable and secure computing
 IEEE TDSC
, 2004
"... This paper gives the main definitions relating to dependability, a generic concept including as special case such attributes as reliability, availability, safety, integrity, maintainability, etc. Security brings in concerns for confidentiality, in addition to availability and integrity. Basic defin ..."
Abstract

Cited by 779 (6 self)
 Add to MetaCart
This paper gives the main definitions relating to dependability, a generic concept including as special case such attributes as reliability, availability, safety, integrity, maintainability, etc. Security brings in concerns for confidentiality, in addition to availability and integrity. Basic
Results 1  10
of
1,105,396