• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 18,407
Next 10 →

Understanding Normal and Impaired Word Reading: Computational Principles in Quasi-Regular Domains

by David C. Plaut , James L. McClelland, Mark S. Seidenberg, Karalyn Patterson - PSYCHOLOGICAL REVIEW , 1996
"... We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract - Cited by 613 (94 self) - Add to MetaCart
We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic

Regularization and variable selection via the Elastic Net.

by Hui Zou , Trevor Hastie - J. R. Stat. Soc. Ser. B , 2005
"... Abstract We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, wher ..."
Abstract - Cited by 973 (11 self) - Add to MetaCart
. An efficient algorithm called LARS-EN is proposed for computing elastic net regularization paths efficiently, much like the LARS algorithm does for the lasso.

Regularization paths for generalized linear models via coordinate descent

by Jerome Friedman, Trevor Hastie, Rob Tibshirani , 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract - Cited by 724 (15 self) - Add to MetaCart
elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

Regularized discriminant analysis

by Jerome H. Friedman - J. Amer. Statist. Assoc , 1989
"... Linear and quadratic discriminant analysis are considered in the small sample high-dimensional setting. Alternatives to the usual maximum likelihood (plug-in) estimates for the covariance matrices are proposed. These alternatives are characterized by two parameters, the values of which are customize ..."
Abstract - Cited by 468 (2 self) - Add to MetaCart
are customized to individual situations by jointly minimizing a sample based estimate of future misclassification risk. Computationally fast implementations are presented, and the efficacy of the approach is examined through simulation studies and application to data. These studies indicate that in many

The Advantages of Evolutionary Computation

by David B. Fogel , 1997
"... Evolutionary computation is becoming common in the solution of difficult, realworld problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific ..."
Abstract - Cited by 541 (6 self) - Add to MetaCart
advantages include the flexibility of the procedures, as well as the ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine. 1 Introduction Darwinian evolution is intrinsically a robust search

Distributed Computing in Practice: The Condor Experience

by Douglas Thain, Todd Tannenbaum, Miron Livny , 2005
"... Since 1984, the Condor project has enabled ordinary users to do extraordinary computing. Today, the project continues to explore the social and technical problems of cooperative computing on scales ranging from the desktop to the world-wide computational Grid. In this paper, we provide the history a ..."
Abstract - Cited by 551 (8 self) - Add to MetaCart
Since 1984, the Condor project has enabled ordinary users to do extraordinary computing. Today, the project continues to explore the social and technical problems of cooperative computing on scales ranging from the desktop to the world-wide computational Grid. In this paper, we provide the history

Muscle: multiple sequence alignment with high accuracy and high throughput

by Robert C. Edgar - NUCLEIC ACIDS RES , 2004
"... We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the logexpectation score, and refinement using tree-dependent r ..."
Abstract - Cited by 2509 (7 self) - Add to MetaCart
, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data

The Anatomy of a Context-Aware Application

by Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, Paul Webster - WIRELESS NETWORKS, VOL , 1999
"... We describe a platform for context-aware computing which enables applications to follow mobile users as they move around a building. The platform is particularly suitable for richly equipped, networked environments. The only item a user is required to carry is a small sensor tag, which identifies th ..."
Abstract - Cited by 537 (3 self) - Add to MetaCart
We describe a platform for context-aware computing which enables applications to follow mobile users as they move around a building. The platform is particularly suitable for richly equipped, networked environments. The only item a user is required to carry is a small sensor tag, which identifies

Cyberguide: A Mobile Context-Aware Tour Guide

by Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper, Mike Pinkerton , 1996
"... Future computing environments will free the user from the constraints of the desktop. Applications for a mobile environment should take advantage of contextual information, suach as position, to offer greater services to the user. In his paper, we present the Cyberguide project, in which we are buil ..."
Abstract - Cited by 652 (24 self) - Add to MetaCart
Future computing environments will free the user from the constraints of the desktop. Applications for a mobile environment should take advantage of contextual information, suach as position, to offer greater services to the user. In his paper, we present the Cyberguide project, in which we

MEGA5: Molecular evolutionary genetics analysis using maximum . . .

by Koichiro Tamura, Daniel Peterson, Nicholas Peterson, Glen Stecher, Masatoshi Nei, Sudhir Kumar , 2011
"... Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version ..."
Abstract - Cited by 7284 (25 self) - Add to MetaCart
) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared
Next 10 →
Results 1 - 10 of 18,407
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University