Results 1  10
of
14,822
Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties
 J. Alg. Geom
, 1994
"... We consider families F(∆) consisting of complex (n − 1)dimensional projective algebraic compactifications of ∆regular affine hypersurfaces Zf defined by Laurent polynomials f with a fixed ndimensional Newton polyhedron ∆ in ndimensional algebraic torus T = (C ∗ ) n. If the family F(∆) defined by ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
We consider families F(∆) consisting of complex (n − 1)dimensional projective algebraic compactifications of ∆regular affine hypersurfaces Zf defined by Laurent polynomials f with a fixed ndimensional Newton polyhedron ∆ in ndimensional algebraic torus T = (C ∗ ) n. If the family F(∆) defined
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory progressed also to the study of socalled stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.
Face Recognition: A Literature Survey
, 2000
"... ... This paper provides an uptodate critical survey of still and videobased face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an uptodate review of the existing literature, and the second is to offer some insights into ..."
Abstract

Cited by 1363 (21 self)
 Add to MetaCart
... This paper provides an uptodate critical survey of still and videobased face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an uptodate review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition,
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particular realization of the N = 2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira– Spencer theory, which may be viewed as the closed string analog of the Chern–Simon theory. Using the mirror map this leads to computation of the ‘number ’ of holomorphic curves of higher genus curves in Calabi–Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the corresponding N = 2 theory. Relations with c = 1 strings are also pointed out.
Quantum field theory on noncommutative spaces
"... A pedagogical and selfcontained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the WeylWigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommuta ..."
Abstract

Cited by 397 (26 self)
 Add to MetaCart
A pedagogical and selfcontained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the WeylWigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative YangMills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an indepth study of the gauge group of noncommutative YangMills theory. Some of the more mathematical ideas and
Statistical shape influence in geodesic active contours
 In Proc. 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Hilton Head, SC
, 2000
"... A novel method of incorporating shape information into the image segmentation process is presented. We introduce a representation for deformable shapes and define a probability distribution over the variances of a set of training shapes. The segmentation process embeds an initial curve as the zero l ..."
Abstract

Cited by 393 (4 self)
 Add to MetaCart
A novel method of incorporating shape information into the image segmentation process is presented. We introduce a representation for deformable shapes and define a probability distribution over the variances of a set of training shapes. The segmentation process embeds an initial curve as the zero level set of a higher dimensional surface, and evolves the surface such that the zero level set converges on the boundary of the object to be segmented. At each step of the surface evolution, we estimate the maximum a posteriori (MAP) position and shape of the object in the image, based on the prior shape information and the image information. We then evolve the surface globally, towards the MAP estimate, and locally, based on image gradients and curvature. Results are demonstrated on synthetic data and medical imagery, in 2D and 3D. 1
Results 1  10
of
14,822