Results 1  10
of
3,815
Regression tasks in machine learning via Fenchel duality
, 2012
"... Abstract. Supervised learning methods are powerful techniques to learn a function from a given set of labeled data, the socalled training data. In this paper the support vector machines approach for regression is investigated under a theoretical point of view that makes use of convex analysis and F ..."
Abstract
 Add to MetaCart
problem. Corresponding dual problems are then derived for different loss functions. The theoretical results are applied by numerically solving the regression task for two data sets and the accuracy of the regression when choosing different loss functions is investigated.
Multitask Learning,”
, 1997
"... Abstract. Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for ..."
Abstract

Cited by 677 (6 self)
 Add to MetaCart
for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new evidence that MTL in backprop nets discovers task relatedness without the need of supervisory signals, and presents new results for MTL with knearest neighbor and kernel regression. In this paper we
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 727 (18 self)
 Add to MetaCart
search strategies, each of which is a query expansion for a given domain. For this task, we compare the performance of RankBoost to the individual search strategies. The second experiment is a collaborativefiltering task for making movie recommendations. Here, we present results comparing Rank
Mean shift: A robust approach toward feature space analysis
 In PAMI
, 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract

Cited by 2395 (37 self)
 Add to MetaCart
the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and thus its utility in detecting the modes of the density. The equivalence of the mean shift procedure to the Nadaraya–Watson estimator from kernel regression and the robust M
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract

Cited by 966 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Predicting the Semantic Orientation of Adjectives
, 1997
"... We identify and validate from a large corpus constraints from conjunctions on the positive or negative semantic orientation of the conjoined adjectives. A loglinear regression model uses these constraints to predict whether conjoined adjectives are of same or different orientations, achiev ..."
Abstract

Cited by 473 (5 self)
 Add to MetaCart
We identify and validate from a large corpus constraints from conjunctions on the positive or negative semantic orientation of the conjoined adjectives. A loglinear regression model uses these constraints to predict whether conjoined adjectives are of same or different orientations, achiev
A Survey on Transfer Learning
"... A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many realworld applications, this assumption may not hold. For example, we sometimes have a classification task i ..."
Abstract

Cited by 459 (24 self)
 Add to MetaCart
A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many realworld applications, this assumption may not hold. For example, we sometimes have a classification task
Learning to Predict One or More Ranks in Ordinal Regression Tasks
"... www.aic.uniovi.es Abstract. We present nondeterministic hypotheses learned from an ordinal regression task. They try to predict the true rank for an entry, but when the classification is uncertain the hypotheses predict a set of consecutive ranks (an interval). The aim is to keep the set of ranks as ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
www.aic.uniovi.es Abstract. We present nondeterministic hypotheses learned from an ordinal regression task. They try to predict the true rank for an entry, but when the classification is uncertain the hypotheses predict a set of consecutive ranks (an interval). The aim is to keep the set of ranks
Flexible smoothing with Bsplines and penalties
 STATISTICAL SCIENCE
, 1996
"... Bsplines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small and discrete number allows only limited control over smoothness and fit. We propose to use a relatively large number of knots ..."
Abstract

Cited by 405 (7 self)
 Add to MetaCart
Bsplines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small and discrete number allows only limited control over smoothness and fit. We propose to use a relatively large number
RCGAS/RCGASP Methods to Minimize the Delta Test for Regression Tasks
"... Abstract. Frequently, the number of input variables (features) involved in a problem becomes too large to be easily handled by conventional machinelearning models. This paper introduces a combined strategy that uses a realcoded genetic algorithm to find the optimal scaling (RCGAS) or scaling + pr ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
+ projection (RCGASP) factors that minimize the Delta Test criterion for variable selection when being applied to the input variables. These two methods are evaluated on five different regression datasets and their results are compared. The results confirm the goodness of both methods although RCGA
Results 1  10
of
3,815