• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 44,712
Next 10 →

Regression Models for Categorical Dependent Variables Using Stata

by J. Scott Long, Jeremy Freese , 2001
"... . ..."
Abstract - Cited by 812 (4 self) - Add to MetaCart
Abstract not found

Bayesian Model Averaging for Linear Regression Models

by Adrian E. Raftery, Jennifer A. Hoeting, David Madigan - Journal of the American Statistical Association , 1997
"... We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem in ..."
Abstract - Cited by 325 (17 self) - Add to MetaCart
We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem

Multivariate adaptive regression splines

by Jerome H. Friedman - The Annals of Statistics , 1991
"... A new method is presented for flexible regression modeling of high dimensional data. The model takes the form of an expansion in product spline basis functions, where the number of basis functions as well as the parameters associated with each one (product degree and knot locations) are automaticall ..."
Abstract - Cited by 700 (2 self) - Add to MetaCart
A new method is presented for flexible regression modeling of high dimensional data. The model takes the form of an expansion in product spline basis functions, where the number of basis functions as well as the parameters associated with each one (product degree and knot locations

Regression Shrinkage and Selection Via the Lasso

by Robert Tibshirani - JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B , 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract - Cited by 4212 (49 self) - Add to MetaCart
that are exactly zero and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also

Projection Pursuit Regression

by Jerome H. Friedman, Werner Stuetzle - Journal of the American Statistical Association , 1981
"... A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general- smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures, ..."
Abstract - Cited by 550 (6 self) - Add to MetaCart
A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general- smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures

Least absolute deviations estimation for the censored regression model

by James L. Powell - Journal of Econometrics , 1984
"... This paper proposes an alternative to maximum likelihood estimation of the parameters of the censored regression (or censored ‘Tobit’) model. The proposed estimator is a generalization of least absolute deviations estimation for the standard linear model, and, unlike estimation methods based on the ..."
Abstract - Cited by 285 (6 self) - Add to MetaCart
This paper proposes an alternative to maximum likelihood estimation of the parameters of the censored regression (or censored ‘Tobit’) model. The proposed estimator is a generalization of least absolute deviations estimation for the standard linear model, and, unlike estimation methods based

Least angle regression

by Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani , 2004
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract - Cited by 1326 (37 self) - Add to MetaCart
to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm

Model selection and estimation in regression with grouped variables

by Ming Yuan, Yi Lin , 2006
"... ..."
Abstract - Cited by 1161 (9 self) - Add to MetaCart
Abstract not found

Structural Equation Modeling And Regression: Guidelines For Research Practice

by David Gefen, Detmar W. Straub, Marie-Claude Boudreau - COMMUNICATIONS OF THE ASSOCIATION FOR INFORMATION SYSTEMS , 2000
"... The growing interest in Structured Equation Modeling (SEM) techniques and recognition of their importance in IS research suggests the need to compare and contrast different types of SEM techniques so that research designs can be appropriately selected. After assessing the extent to which these techn ..."
Abstract - Cited by 454 (9 self) - Add to MetaCart
regression models and offers guidelines as to when SEM techniques and when regression techniques should be used. The article concludes with heuristics and rule of thumb thresholds to guide practice, and a discussion of the extent to which practice is in accord with these guidelines.

Hierarchical regression modeling for language

by Kyle Gorman, Kyle Gorman , 2009
"... Hierarchical regression modeling for language research∗ ..."
Abstract - Add to MetaCart
Hierarchical regression modeling for language research∗
Next 10 →
Results 1 - 10 of 44,712
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University