Results 1  10
of
985,622
The Importance of Rank Position
, 2013
"... We find an individual’s rank within their reference group has effects on later objective outcomes. To evaluate the impact of local rank, we use a large administrative dataset tracking over two million students in England from primary through to secondary school. Academic rank within primary school h ..."
Abstract
 Add to MetaCart
when faced with multiple tasks. We believe this is the first largescale study to show large and robust effects of rank position on objective outcomes of that have consequences in the labour market.
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 510 (17 self)
 Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data
Rank Aggregation Methods for the Web
, 2010
"... We consider the problem of combining ranking results from various sources. In the context of the Web, the main applications include building metasearch engines, combining ranking functions, selecting documents based on multiple criteria, and improving search precision through word associations. Wed ..."
Abstract

Cited by 473 (6 self)
 Add to MetaCart
We consider the problem of combining ranking results from various sources. In the context of the Web, the main applications include building metasearch engines, combining ranking functions, selecting documents based on multiple criteria, and improving search precision through word associations
Cumulated Gainbased Evaluation of IR Techniques
 ACM Transactions on Information Systems
, 2002
"... Modem large retrieval environments tend to overwhelm their users by their large output. Since all documents are not of equal relevance to their users, highly relevant documents should be identified and ranked first for presentation to the users. In order to develop IR techniques to this direction, i ..."
Abstract

Cited by 656 (3 self)
 Add to MetaCart
. Alternatively, novel measures based on graded relevance assessments may be developed. This paper proposes three novel measures that compute the cumulative gain the user obtains by examining the retrieval result up to a given ranked position. The first one accumulates the relevance scores of retrieved documents
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 860 (27 self)
 Add to MetaCart
perfectly recover most lowrank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 707 (18 self)
 Add to MetaCart
boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experiment, we used the algorithm to combine different WWW
A comparative analysis of selection schemes used in genetic algorithms
 Foundations of Genetic Algorithms
, 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or d ..."
Abstract

Cited by 512 (32 self)
 Add to MetaCart
This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 553 (26 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse
Learnability in Optimality Theory
, 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract

Cited by 528 (34 self)
 Add to MetaCart
grammatical module. We decompose the learning problem and present formal results for a central subproblem, deducing the constraint ranking particular to a target language, given structural descriptions of positive examples. The structure imposed on the space of possible grammars by Optimality Theory allows
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 610 (15 self)
 Add to MetaCart
The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified
Results 1  10
of
985,622