Results 1  10
of
32,722
Randomized Experiments from Nonrandom Selection in the U.S. House Elections
 Journal of Econometrics
, 2008
"... This paper establishes the relatively weak conditions under which causal inferences from a regressiondiscontinuity (RD) analysis can be as credible as those from a randomized experiment, and hence under which the validity of the RD design can be tested by examining whether or not there is a discont ..."
Abstract

Cited by 377 (17 self)
 Add to MetaCart
This paper establishes the relatively weak conditions under which causal inferences from a regressiondiscontinuity (RD) analysis can be as credible as those from a randomized experiment, and hence under which the validity of the RD design can be tested by examining whether or not there is a
Random forests
 Machine Learning
, 2001
"... Abstract. Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the fo ..."
Abstract

Cited by 3613 (2 self)
 Add to MetaCart
in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R
Support Vector Machine Active Learning with Applications to Text Classification
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2001
"... Support vector machines have met with significant success in numerous realworld learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using poolbased acti ..."
Abstract

Cited by 735 (5 self)
 Add to MetaCart
Support vector machines have met with significant success in numerous realworld learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool
The CONSORT statement: revised recommendations for improving the quality of reports of parallelgroup randomized trials,”
 Journal of the American Medical Association,
, 1987
"... To comprehend the results of a randomized, controlled trial (RCT), readers must understand its design, conduct, analysis, and interpretation. That goal can be achieved only through complete transparency from authors. Despite several decades of educational efforts, the reporting of RCTs needs improv ..."
Abstract

Cited by 787 (15 self)
 Add to MetaCart
To comprehend the results of a randomized, controlled trial (RCT), readers must understand its design, conduct, analysis, and interpretation. That goal can be achieved only through complete transparency from authors. Despite several decades of educational efforts, the reporting of RCTs needs
CURE: An Efficient Clustering Algorithm for Large Data sets
 Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract

Cited by 722 (5 self)
 Add to MetaCart
clustering algorithm called CURE that is more robust to outliers, and identifies clusters having nonspherical shapes and wide variances in size. CURE achieves this by representing each cluster by a certain fixed number of points that are generated by selecting well scattered points from the cluster
The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme.
 Proceedings of the Royal Society of London Series B, Biological Sciences
, 1979
"... An adaptationist programme has dominated evolutionary thought in England and the United States during the past 40 years. It is based on faith in the power of natural selection as an optimizing agent. It proceeds by breaking an organism into unitary 'traits' and proposing an adaptive story ..."
Abstract

Cited by 538 (2 self)
 Add to MetaCart
alternatives to adaptive stories; for its reliance upon plausibility alone as a criterion for accepting speculative tales; and for its failure to consider adequately such competing themes as random fixation of alleles, production of nonadaptive structures by developmental correlation with selected features
On PowerLaw Relationships of the Internet Topology
 IN SIGCOMM
, 1999
"... Despite the apparent randomness of the Internet, we discover some surprisingly simple powerlaws of the Internet topology. These powerlaws hold for three snapshots of the Internet, between November 1997 and December 1998, despite a 45% growth of its size during that period. We show that our powerl ..."
Abstract

Cited by 1670 (70 self)
 Add to MetaCart
Despite the apparent randomness of the Internet, we discover some surprisingly simple powerlaws of the Internet topology. These powerlaws hold for three snapshots of the Internet, between November 1997 and December 1998, despite a 45% growth of its size during that period. We show that our power
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 873 (26 self)
 Add to MetaCart
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
to converge if none of the beliefs in successive iterations changed by more than a small threshold (104). All messages were initialized to a vector of ones; random initializa tion yielded similar results, since the initial conditions rapidly get "washed out" . For comparison, we also implemented
The Cryptographic Power of Random Selection
"... Abstract. The principle of random selection and the principle of adding biased noise are new paradigms used in several recent papers for constructing lightweight RFID authentication protocols. The cryptographic power of adding biased noise can be characterized by the hardness of the intensively stud ..."
Abstract
 Add to MetaCart
Abstract. The principle of random selection and the principle of adding biased noise are new paradigms used in several recent papers for constructing lightweight RFID authentication protocols. The cryptographic power of adding biased noise can be characterized by the hardness of the intensively
Results 1  10
of
32,722