Results 1  10
of
146,669
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 566 (11 self)
 Add to MetaCart
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string
Quantum reduction for affine superalgebras
 Comm. Math. Phys
"... We extend the homological method of quantization of generalized Drinfeld–Sokolov reductions to affine superalgebras. This leads, in particular, to a unified representation theory of superconformal algebras. ..."
Abstract

Cited by 41 (7 self)
 Add to MetaCart
We extend the homological method of quantization of generalized Drinfeld–Sokolov reductions to affine superalgebras. This leads, in particular, to a unified representation theory of superconformal algebras.
Quantum reduction in the twisted case
, 2008
"... We study the quantum Hamiltonian reduction for affine superalgebras in the twisted case. This leads to a general representation theory of all superconformal algebras, including the twisted ones (like the Ramond algebra). In particular, we find general free field realizations and determinant formulae ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
We study the quantum Hamiltonian reduction for affine superalgebras in the twisted case. This leads to a general representation theory of all superconformal algebras, including the twisted ones (like the Ramond algebra). In particular, we find general free field realizations and determinant
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
GromovWitten classes, quantum cohomology, and enumerative geometry
 Commun. Math. Phys
, 1994
"... The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological ..."
Abstract

Cited by 484 (3 self)
 Add to MetaCart
The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological
Quantum reduction and representation theory of superconformal algebras
 Adv. Math
"... We study the structure and representations of a family of vertex algebras obtained from affine superalgebras by quantum reduction. As an application, we obtain in a unified way free field realizations and determinant formulas for all superconformal algebras. 0 ..."
Abstract

Cited by 37 (9 self)
 Add to MetaCart
We study the structure and representations of a family of vertex algebras obtained from affine superalgebras by quantum reduction. As an application, we obtain in a unified way free field realizations and determinant formulas for all superconformal algebras. 0
The University of Florida sparse matrix collection
 NA DIGEST
, 1997
"... The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural enginee ..."
Abstract

Cited by 538 (19 self)
 Add to MetaCart
engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, networks
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract

Cited by 850 (0 self)
 Add to MetaCart
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical
SeibergWitten prepotential from instanton counting
, 2002
"... In my lecture I consider integrals over moduli spaces of supersymmetric gauge field configurations (instantons, Higgs bundles, torsion free sheaves). The applications are twofold: physical and mathematical; they involve supersymmetric quantum mechanics of Dparticles in various dimensions, direct co ..."
Abstract

Cited by 496 (9 self)
 Add to MetaCart
In my lecture I consider integrals over moduli spaces of supersymmetric gauge field configurations (instantons, Higgs bundles, torsion free sheaves). The applications are twofold: physical and mathematical; they involve supersymmetric quantum mechanics of Dparticles in various dimensions, direct
Results 1  10
of
146,669