• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 11 - 20 of 19,628
Next 10 →

Classification of Vehicles Based on Audio Signals using Quadratic Discriminant Analysis and High Energy Feature Vectors

by A D Mayvan , S A Beheshti , M H Masoom
"... ABSTRACT The focusof this paper is on classification of different vehicles using sound emanated from the vehicles. In this paper,quadratic discriminant analysis classifies audio signals of passing vehicles to bus, car, motor, and truck categories based on features such as short time energy, average ..."
Abstract - Add to MetaCart
ABSTRACT The focusof this paper is on classification of different vehicles using sound emanated from the vehicles. In this paper,quadratic discriminant analysis classifies audio signals of passing vehicles to bus, car, motor, and truck categories based on features such as short time energy

Fisher Discriminant Analysis With Kernels

by Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Klaus-Robert Müller , 1999
"... A non-linear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) non-linear decision f ..."
Abstract - Cited by 503 (18 self) - Add to MetaCart
A non-linear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) non-linear decision

Model-Based Clustering, Discriminant Analysis, and Density Estimation

by Chris Fraley, Adrian E. Raftery - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract - Cited by 573 (29 self) - Add to MetaCart
for model-based clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster

Using Discriminant Eigenfeatures for Image Retrieval

by Daniel L. Swets, John Weng , 1996
"... This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class retrieval ..."
Abstract - Cited by 508 (15 self) - Add to MetaCart
This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class

Exploiting Generative Models in Discriminative Classifiers

by Tommi Jaakkola, David Haussler - In Advances in Neural Information Processing Systems 11 , 1998
"... Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often resu ..."
Abstract - Cited by 551 (9 self) - Add to MetaCart
Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often

Comparison of discrimination methods for the classification of tumors using gene expression data

by Sandrine Dudoit, Jane Fridlyand, Terence P. Speed - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2002
"... A reliable and precise classification of tumors is essential for successful diagnosis and treatment of cancer. cDNA microarrays and high-density oligonucleotide chips are novel biotechnologies increasingly used in cancer research. By allowing the monitoring of expression levels in cells for thousand ..."
Abstract - Cited by 770 (6 self) - Add to MetaCart
analysis, and classification trees. Recent machine learning approaches, such as bagging and boosting, are also considered. The discrimination methods are applied to datasets from three recently published cancer gene expression studies.

The use of the area under the ROC curve in the evaluation of machine learning algorithms

by Andrew P. Bradley - PATTERN RECOGNITION , 1997
"... In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi-layer Perceptron, k-Ne ..."
Abstract - Cited by 685 (3 self) - Add to MetaCart
-Nearest Neighbours, and a Quadratic Discriminant Function) on six "real world " medical diagnostics data sets. We compare and discuss the use of AUC to the more conventional overall accuracy and find that AUC exhibits a number of desirable properties when compared to overall accuracy: increased

An introduction to kernel-based learning algorithms

by Klaus-Robert Müller, Sebastian Mika, Gunnar Rätsch, Koji Tsuda, Bernhard Schölkopf - IEEE TRANSACTIONS ON NEURAL NETWORKS , 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract - Cited by 598 (55 self) - Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and

c � 1998 Kluwer Academic Publishers. Printed in Belgium. Identification of protein-coding regions in Arabidopsis thaliana genome based on quadratic discriminant analysis

by M. Q. Zhang , 1998
"... A new method (MZEF) for predicting internal coding exons in genomic DNA sequences has been developed. This method is based on a prediction algorithm that uses the quadratic discriminant function for multivariate statistical pattern recognition. With improved feature measures, an Arabidopsis thaliana ..."
Abstract - Add to MetaCart
A new method (MZEF) for predicting internal coding exons in genomic DNA sequences has been developed. This method is based on a prediction algorithm that uses the quadratic discriminant function for multivariate statistical pattern recognition. With improved feature measures, an Arabidopsis

Implicit social cognition: Attitudes, self-esteem, and stereotypes

by Anthony G. Greenwald, Mahzarin R. Banaji - Psychological Review , 1995
"... Social behavior is ordinarily treated as being under conscious (if not always thoughtful) control. However, considerable evidence now supports the view that social behavior often operates in an implicit or unconscious fashion. The identifying feature of implicit cognition is that past experience inf ..."
Abstract - Cited by 687 (65 self) - Add to MetaCart
. Methodologically, this review calls for increased use of indirect measures—which are imperative in studies of implicit cognition. The theorized ordinariness of implicit stereotyping is consistent with recent findings of discrimination by people who explicitly disavow prejudice. The finding that implicit cognitive
Next 10 →
Results 11 - 20 of 19,628
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University