Results 1 - 10
of
8,870
Fusion, Propagation, and Structuring in Belief Networks
- ARTIFICIAL INTELLIGENCE
, 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract
-
Cited by 484 (8 self)
- Add to MetaCart
with the task of fusing and propagating the impacts of new information through the networks in such a way that, when equilibrium is reached, each proposition will be assigned a measure of belief consistent with the axioms of probability theory. It is shown that if the network is singly connected (e.g. tree
Propagation of Trust and Distrust
, 2004
"... A network of people connected by directed ratings or trust scores, and a model for propagating those trust scores, is a fundamental building block in many of today's most successful e-commerce and recommendation systems. In eBay, such a model of trust has significant influence on the price an i ..."
Abstract
-
Cited by 439 (1 self)
- Add to MetaCart
information. Our work appears to be the first to incorporate distrust in a computational trust propagation setting.
Perspectives on Program Analysis
, 1996
"... eing analysed. On the negative side, the semantic correctness of the analysis is seldom established and therefore there is often no formal justification for the program transformations for which the information is used. The semantics based approach [1; 5] is often based on domain theory in the form ..."
Abstract
-
Cited by 685 (35 self)
- Add to MetaCart
eing analysed. On the negative side, the semantic correctness of the analysis is seldom established and therefore there is often no formal justification for the program transformations for which the information is used. The semantics based approach [1; 5] is often based on domain theory
Unscented Filtering and Nonlinear Estimation
- PROCEEDINGS OF THE IEEE
, 2004
"... The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the ..."
Abstract
-
Cited by 566 (5 self)
- Add to MetaCart
on the time scale of the updates. Many of these difficulties arise from its use of linearization. To overcome this limitation, the unscented transformation (UT) was developed as a method to propagate mean and covariance information through nonlinear transformations. It is more accurate, easier to implement
RADAR: an in-building RF-based user location and tracking system
, 2000
"... The proliferation of mobile computing devices and local-area wireless networks has fostered a growing interest in location-aware systems and services. In this paper we present RADAR, a radio-frequency (RF) based system for locating and tracking users inside buildings. RADAR operates by recording and ..."
Abstract
-
Cited by 2036 (14 self)
- Add to MetaCart
and processing signal strength information at multiple base stations positioned to provide overlapping coverage in the area of interest. It employs techniques that combine empirical measurements with signal propagation modeling to enable location-aware services and applications. We present concrete experimental
Learning low-level vision
- International Journal of Computer Vision
, 2000
"... We show a learning-based method for low-level vision problems. We set-up a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently prop ..."
Abstract
-
Cited by 579 (30 self)
- Add to MetaCart
propagate image information. Monte Carlo simulations justify this approximation. We apply this to the \super-resolution " problem (estimating high frequency details from a low-resolution image), showing good results. For the motion estimation problem, we show resolution of the aperture problem
Consensus and cooperation in networked multi-agent systems
- Proceedings of the IEEE
, 2007
"... Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An ove ..."
Abstract
-
Cited by 807 (4 self)
- Add to MetaCart
networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract
-
Cited by 819 (28 self)
- Add to MetaCart
fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes
Network Coding for Large Scale Content Distribution
"... We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling of bloc ..."
Abstract
-
Cited by 493 (7 self)
- Add to MetaCart
of block propagation, and, thus, makes the distribution more efficient. This is particularly important in large unstructured overlay networks, where the nodes need to make decisions based on local information only. We compare network coding to other schemes that transmit unencoded information (i.e. blocks
Turbo decoding as an instance of Pearl’s belief propagation algorithm
- IEEE Journal on Selected Areas in Communications
, 1998
"... Abstract—In this paper, we will describe the close connection between the now celebrated iterative turbo decoding algorithm of Berrou et al. and an algorithm that has been well known in the artificial intelligence community for a decade, but which is relatively unknown to information theorists: Pear ..."
Abstract
-
Cited by 404 (16 self)
- Add to MetaCart
Abstract—In this paper, we will describe the close connection between the now celebrated iterative turbo decoding algorithm of Berrou et al. and an algorithm that has been well known in the artificial intelligence community for a decade, but which is relatively unknown to information theorists
Results 1 - 10
of
8,870